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ABSTRACT

Some topics related to dynamic testing of strap-
down Sensors are analyzed, with emphasis on m'easuring
parameters which giveriseto motion-induced error torques
in single-degree-~of-freedom inertial sensors. The objec-
tive is to determine the dynamic inputs, test equipment
characteristics aﬁd data processing procedures best suited
for measuring these parameters. Single-axis, low fre-
quency vibration tests and constant rate tests are studied
in detail. Methods for analyzing the effects of test motion
errors and measurement errors are developed and illus-
trated by examples., They are shown to be usefﬁl in pre~
dicting achievable fest accuracies and required test times.
Candidate test data processing methods are compared and

- recommendations concerning test equipment and data proc-

essing are made.
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1. ‘ INTRODUCTION

The potential advantages of strapdown or gimballess inertial
systems over conventional, gimballed systems have been recognized for
some time (Ref, 1). These include flexible packaging, low power con-
sumption, weight and volume, easy assembly and maintenance and con-
venient use of navigation sensors in autopilot functions. Continuing
advances in the development of smaller, faster and more compact digital
computers have led to increased interest in strapdown systems. It is
clear that these devices will perform acceptably for certain missions and

will be, in some cases, superior in overall cost and reliability.

With the advent of strapdown inertial systems, new problems in
achieving high sensor accuracies have arisen, Platform systems isolate
the inertial sensors from most rotational motion. However, when the '
instruments are rigidly attached to the vehicle, they can be subjected to
a severe angular motion environment, resulting in errors which can be
rectified both in the instrument and in the attitude transformation calcu-
lation. For example, Ref. 2 shows that the magnitudes of vibration-
induced errors can be considerably greater than gyro drift rates which are
usually acceptable for navigation applications, Errors of this kind are not
observed during static tests. Thus, in order to measure their effects

accurately enough to assure adequate compensation during operation,

vstrapdown sensors must be subjected to dynamic testing.

Torque rebalance loops, which are a common feature of strap-
down sensors, lead fo additional errors, 2as well as creating problems in
testing for motion-induced disturbance torques. While they provide data

in a form suitable for digital navigation computers, pulse rebalance loops
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in particular introduce essential nonlinearitics which complicate the

dynamic testing problem,

1.1 OBJECTIVES OF STUDY

The objectives of this study are summarized briefly as follows:

o Determine the input dynamical forecing functions best
suited for testing for all significant error coeificients.

e Determine necessary test durations and the nature and
accuracies required of the essential test equipment.

e Compare alternative methods of test data processing,
considering the possibilities for both on-line and
off-line computation.

¢ Suggest alternative test procedures which may substitute
sophisticated test data processing for complex test
motion machinery.

e Devise test procedures which will establish an under-
standing of statistical predictability in the stability of
sensor parameters.

Substantial progress has been made regarding the first four

objectives in the above list,

. The investigation concerns testing for certain parameters which
égu_se errors in single-degree-of-freedom sensors, especially those fac-
t@irs associated with angular motion, and therefore uniquely important for
strapdown sensors., These parameters correspohd to a set of fixed
mechanical properties, such as products of inertia of various elements

of an instrument and the alignment of sensor components with respect to
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one another. Rebalance loop errors such as fixed scale factor error and
torquer nonlinearity are also considered. The study has not been con-

cerned with such items as torquer scale factor changes, friction, thermal
gradients and electromagnetic effects, all of which may combine with
angular motion o cause errors. Problems associated with rebalance
loop dynamics are not treated, but will be the subject of future work

related to high frequency testing.

o The ultimate goal of this effort is to help formulate complete
test sequences, such as that pictured in Fig. 1.1-1. The illustrated
sequé‘nce begins with a set of physical measurements on the basic sensor
components, moves to a set of conventional static and low-rate tests which
produce estimates of the quantities normally sought for platform appli-~
cations, and concludes with a set of dynamic tests designed to extract the
parameters uniquely important in' strapdown applications. The require-
ments of a particular test sequence depend of course on the underlying
reasons for the test. Are they, for example, related to a research pro-
gram aimed at developing new sensors or are they part of a mlssmn-
oriented program involving a series of qualification and cahbratmn tests?
The development presented herein is general enough to cover both

situations.

B The report describes an analysis of dynamic testing of single-
degree-of-freedom sensors, emphasizing single-axis testing. This type
of testing involves the hardware elements pictured in Fig. 1.1-2, con-
nected together as indicated. The sensor outputs and test table outputs
feed data into a computer, either directly for real-time processing, or
by way of a data storage medium for subsequent processing. Elements
of the strapdown sensor test problem are illustrated in Fig. 1.1-3. The

main test objectives are to determine the magnitude and stability of
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Figure 1.1-1 Test Sequence Flow Diagram
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Figure 1,1-2 Dynamic Testing and Data Processing
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The Strapdown Sensor Test Problem

parameters which cause error torques.- Test errors are associated with

imperfections in the motion-supplying equipment, the (optional) sensors

whi‘ch may be used to measure the applied motion and those parts of the

strapdown sensor itself which are used as a measuring instrument (such

as torque rebalance electronics). The immediate goal of the study is to

recommend inpui motions and data processing procedures and to analyze

the effects of test errors on overall test accuracy and duration.
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1.2 ORGANIZATION OF THE REPORT

In Chapter 2 the overall test objective is defined as the iden-
tification and measurement of the causes of sensor errors. These are
grouped into three categories: motion-induced errors {such as those
caused by angular motion about the spin and/or output axes of a gyro),
residual errors (such as those caused by thermal and friction effects)
and rebalance-loop errors. Models for certain important motion-induced
errors in single-degree-of-freedom (SDF) gyros and accelerometers are
i)resented, and specialized in a way which is valid for testing SDF sen-
sors in the closed-loop (rebalanced) configuration, using low-frequency
'e'st motion inputs. (In this context "low frequency' means considerably
less than 1/1-f, where Ts is the time constant associated with the sensor
ﬂoat dynamics. For typical inertial sensors a low frequency is therefore
20 Hz or less.) This development leads to a two-stage testing concept:

A set of basic parameter groups is measured directly from a sequence of

applied test motions, and individual parameters are subsequently deter-
mined, algebraically, from the values of the basic parameter groups.
Chapter 2 concludes with a general discussion of possible test motions and
i_ntroduces some of the reasoning behind the decision to emphasize

single-axis testing.

In Chapter 3 single-axis, low-frequency testing is studied in
detail. A particular sequence of sensor orientations with respect to the
test motion axis is recommended. The observable quantities from each
vibration test are a set of Fourier coefficients which define a periodic
function representing the applied torque. A set of six angular vibration
tests and a set of six linear vibration tests provide an array of observable
‘quantities which theoretically permit determination of a complete set of

basic parameter groups. The observable quantities generated by constant
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- rate tests and vibration tests, in which only the average torque is

- measured, are also presented. Three classes of test error sources are
considered: test motion errors, measurement errors and changes in the
sensor parameters, Motion errors and measurement errors have bias,
cyclic and high-frequency noise components. Measurement errors also
include the effects of quantization, Methods for analyzing all of these
error sources are developed. The error analysis is complete for analog
rebalanced sensors, including the case where data is quantized in digital
form. The analysis is incomplete for pulse rebalanced sensors, although
most of the error relationships developed for the analog case apply
equally well to the pulse rebalanced case. The first phase of the data
ﬁféééssing problem, that of estimating the Fourier coefficients, is formu-
lated as a problem in linear estimation, for which the Kalman filter is an
optimal solution. This formulation is useful in studying the combined
effect of random high frequency fluctuations in test motion errors and
measurement errors and in determining the useful fest duration. The
analysis of quantization effects also lends insight into the problems of
choozing test time and the number of data samples per cyecle of test motion.
Three candidates for this data processing function--Fourier analysis,
jeast squares estimation and Kalman filtering--are compared., Chapter 3

“concludes by summarizing the results of example calculations for a
sequence of constant rate and vibration tests on a SDF gyro. Illustrative
values for the observable quantities as well as test error effects are

included.

Tentative conclusions and recommendations concerning the
choice of laboratory equipment are summarized in Chapter 4. Cverall
conclusions and a discussion of the intended continuation of effort are

presented in Chapter 5. A significant recommendation stemming from the
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study to date is that great stress should be placed on the appropriate use

of conventional single-axis test devices, in a combined program of vibra-~
tion testing and constant rate testing of strapdown inertial sensors. In
order to obtain the maximum usefulness from the test data, careful
attention should be given to the means for controlling and/or measuring

tI'rx-e supplied motion and to techniques for recording and/or processing

the sensor output data produced during the tests. These points are explored
m tﬁe body of the report.

Appendices A through D contain detailed technical material in
support of the discussions contained in the main body of the report.
Appendix E summarizes a brief survey of contemporary strapdown sensor

testing and test equipment.
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2. ERROR MODELS AND BASIC PARAMETER GROUPS

This chapter provides a general discussion of single-degree-
of-freedom (SDF) sensors and sensor test objectives and develops a set
of equations for motion-induced error torques. Based on these relations
a set of basic parameter groups is defined. These groups in turn help
clarify the problem of selecting appropriate linear and angular motions
to be applied during tests. The possibilities for test motions are

examined at the end of the chapter.

9.1 SINGLE-DEGREE-OF-FREEDOM INERTIAL SENSORS

Gyroscopes are angular motlion sensors. They are commonly
- based on the use of a spinning member, the rotor, as the sensing element. *
vAll gyroscopes which use a spinning rotor can be classified under two major
groups: single-degree-of-freedom gyros and two-degree-of-freedom gyros.
The two-degree-of-freedom gyro senses angular motion directly, by
measuring the displacement of the rotor spin axis relative to the case.
“The rotor may be mounted in mechanical gimbals, or may be supported
by electric or magnetic fields as in the electrostatically suspended

vacuum gyro and eryogenic gyro.

In the case of the single-degree-of-freedom (SDF) gyro the

spinning rotor is mounted in a gimbal which allows only one degree-of-
freedom relative to the case (see Fig. 2. 1-1}. The equation of motion
of an ideal single-degree-of-freedom gyro can be determined by equating

reaction torques about the output axis to the "applied" gyroscopic

*Notable exceptions are the laser gyro and tuning fork gyro.

i

E?r;c;ding pagé blank ” 11
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{s)
Spin
Reference

Axis Gimbal Angle, o,

Output Axis (o)

Degree of
Freedom
Gimbal

input Axis

{i)

Figure 2.1-1 Single Degree of Freedom Gyro

/
i

precession torque which results from case motion about the input axis,

viz:
I & +Ca +Ke = - Hu, (2.1-1)
00 O 0 o i
where
o = gimbal-to-case- angle about the output axis
Ioo = rotor plus gimbal moment of inertia

C = viscous damping coefficient
K = spring constant
H = rotor angular momentum

w. = angular rate of the case about input axis

12
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As indicated by Eq. (2.1-1), | a constant value of Wy results in the following

steady-state value of )

Hence, this gyro is referred to as a rate gyro, as the gimbal angle is a
direct measure of case rate. Inthe situation where K=0, we get a

steady-state gimbal angle rate,

Ty B

:’fims, gimbal angle is related directly to the integral of the input rate,

and this gyro is therefore called a rate integrating gyro. By mounting

the gyro rotor in an enclosure which serves as the gimbal and floating

the whole assembly in a fluid of appropriate density, the gyro output axis

‘bearings are unloaded, reducing some unwanted torques. This con-

figuration, called the floated rate integrating gyro, is extensively used

for very high accuracy applications such as inertial navigation.

In gimballed platform applications, the gyro float angle, o is
continuously nulled by platform gimbal servo action. In strapdown system

applications, the gyro float angle is nulled by the application of a torque

_generated by passing an electric current through the windings of an output
:axis torquer. The current, which may be continuous (analog) or a series

of pulses (digital), is derived from a measurement of the float angle. The

closed loop comprised of float dynamics, float angle pick-off, torquing
electronics and output axis torquer is called the rebalance loap. The

rebalance current is taken as a measure of input rate (for continuous

13
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torqued gyros) or incremental input angle (for puise torqued gyros).
Figure 2.1-3 shows a general schematic diagram of a strapdown gyro
rebalance loop, including the following three types of torquing electronics:
linear analog-rebalancing, binary pulse-rebalancing and ternary pulse-
rebalancing.

The single-degree-of-freedom pendulous accelerometer is
illustrated in Fig. 2.1-2. Two major differences between this repre-
sentation of the instrument and that presented for the SDF gyro are
obvious. The direction perpendicular to the output and input axes is

called the pendulum (p) axis rather than the spin(s) axis. Also, the
instrument is assumed to consist of only two basic parts: a case and a
combination gimbal and pendulum. The equation of motion of an "ideal"

single-degree-of-freedom accelerometer is:

Io éio +Ca +Ka = m 6p f; (2.1-2)

‘where the quantities not previously defined are:

m = gimbal plus pendulum mass
6p = displacement of the center of mass
- f. = specific force on the case, along

the input axis

Strapdown accelerometers use the same kinds of rebalancé
torquing schemes as those illustrated above for strapdown gyros. The
Tebalance current in this case is a measure of input specific force (for
‘continuous torqued accelerometers) or incremental changes in the integral

of the input specific force (for pulse torqued accelerometers).

14
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{p}

Pendulum
Reference
Axis

Output Axis (o)

Degres of
Freadom

Proof Mass

Figure 2.1-2 Single Degree of Freedom Pendulous Accelerometer

2.2 TEST OBJECTIVES

A block diagram representation of a general test of a SDF
floated sensor in the torque-rebalancing configuration is shown in
Fig. 2.2-1. The diagram illustrates the sensor's nature as a device
which sums torques acting on the floated member. The "applied” torque,
Ma’ consisting of the input (gyroscopic or pendulous) torque and dis-
turbance torque, M Q& is opposed by the torque-generator torque, Mtg'
The latter is fed back through the rebalance loop, in a manner which

tends to null the net torque about the gimbal output axis, Mo'

The controlled test environment includes all quantities (motion,
orientation, temperature, etc. ) which cause input torques or disturbance

torques to be applied. By carcfully controlling and/or measuring these

15 -
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Figure 2.1-3 Rebalance Loop Configurations

16
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Figure 2.2-1 General Test of a Single-

Degree-of-Freedom Sensor

quantities the test operator seeks to isolate and calibrate various sour.ces
of disturbance torque. From the gyro itself the only quantities available
as inputs to the data pr_ocessor are the voltages, €, ‘and e The signal-
generator output, e o is a voltage which is proportional to the float angle
o The output, e . of the block labeled "rebalance electronics’ is an
analog or digital 1nd1cat10n of the rebalance torque Mtg‘ In the analog-
rebalance case the function of the rebalance electronics is to generate a

continuous current, which is proportional to the voltage, ea. In this

tg’
case there is only one available output (e ™ e,) which is a measure of
both the float angle time history and the rebalance torque. In the pulse-
rebalance case e is the sampled output of 2 nonlinear element; it is used

to determine the 51gn of a fixed-magnitude torque applied to the sensor.

The overall test objective can be defined as the identification
. and measurement of the causes of sensor errors; that is, all causes for

a discrepancy between the output of the sensor and the quantity which that

-
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output is supposed to represent. The output of a strapdown gyro is either

a continuous indication of the input-axis angular rate, W, Or a digital

indication of incremental changes in the integral of w; - Similarly, the

output of an accelerometer is a continuous or digital indication of the

input-axis specific force, fi’ or incremental changes in the integral of fi.

Sensor error sources may be grouped as follows: ~

Motion-Induced Error Torques

Error torques are the various components of the
disturbance torque, My, shown in Fig. 2.2-1.
Motion-induced error torques are those directly
associated with case motions, either angular or
linear. They are sometimes referred to as
"dynamic errors."

Residual Error Torques

Residual error torques are all componenis of My not
associated with case motions. For example:

1. Torques due to temperature gradients or non-
standard temperatures.

2. Torques associated with the orientation of the
sensor. These could include mass unbalance
effects during an angular motion test. (The
same parameters lead to motion-induced
torques during a linear vibration test).

3. Undesired friction torques

4, Undesired elastic restraint toi-ques

5. Undesired electromagnetic effects

6. Torques of unknown origin

Any of these may of course change with time. How-
ever, during the relatively short test durations
required for the dynamic tests proposed the above

torques are expected to exhibit very little variation.

4

18 ..
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o Rebalance-Loop Errors

Two broad types of rebalance-loop errors exiét,
as follows:

1. The causes of discrepancies between the
rebalance torque and the value indicated by the
sensor output. Examples are torquer scale-
factor error and torquer nonlinearity.

2. Errors associated with sensor loop dynamics
which are not fast enough to follow the input
motion. In such a case the rebalance torque
time history is not a perfect replica of the
applied torque time history.

. The main emphasis in this report is on testing for
‘motion-induced errors, with some attention paid to torquer errors.
Residual errors are not treated, except in the recognition that a "bias"
error torque is always present during a test involving applied motions.
Errors associated with the dynamics of the rebalance loop are not treated,

but will be the subject of future work related to high-frequency testing.

One approach to testing for rnotion-induced errors is to assume

no prior knowledge of the physical causes of such errors and to design a
procedure which seeks to discover the functional relatmnshlp between

M d and various motions. Another approach is to start with a physically-
derived error model which defines such a functional relationship in terms
: of unspecified parameters, and to design a testing procedure which seeks

-'to determine those parameters. The latter method is followed below.
However, if all the effects in the first technigue are accounted for by one
or more parameters in the second approach, the two are equivalent and
the kind of testing described in Chai:ter 3 has considerable merit in either

case. (This point is discussed further in Section 2.4.)
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2.3 MOTION-INDUCED ERROR TORQUES

This section presents a set of physically-derived error
models for motion-induced error torques in SDF gyros and accelerom-
eters. These error models are taken from equations derived in Refs, 2
and 3. A general expression for the total "applied" output-axis

torque is:
M, = Mpjas * Mang * Myo - (2.3-1)

where

lip

a random bias error torque not
associated with motion

M'bias

Ma,n 2 the torque induced by angular
8 motions
M 2 the torque induced by linear

lin motions

The error models presented below are given as expressions for Mang and
Mlin for the two types of sensors. The notation used is summarized
in Tables 2.3-1 and 2.3-2. For any particular test situation the.

total applied torque as given in Eq.(2.3-1) must be considered.
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TABLE 2.3-1

GYRO NOTATION

‘ fo, fi’ fs = case linear specific force
Wor Wy We = case angular rates
d:o, rbi, Lbs = case angular accelerations
Oy Oyl = gimbal-to-case angular misalignments
BO, Bi = rotor-to-gimbal gngular misalignments

= float moments of inertia (including

1 ,I.,I
00" 11" 88 gimbal and rotor components)

,L. 51 = rotor moments of inertia
oo 'Tii 'S8
oS ’Ioi ’Isi = gimbal products of inertia
g g g
‘Qs = rotor spin rate relative to the gimbal
H =1 _0
$Ss_ S
r
60, ﬁi, 65 = float center of mass displacements
m = float mass
K., K = direct compliances
ii’ " 'ss
X .,K ,K = ¢ross compliances

is? si’ s0’ io

* ’ .
The subscripts, o, i, s refer to output, input and spin
axes, respectively.
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TABLE 2,3-2

ACCELEROMETER NOTATION

P
-2

owrs

£
fog = 1;‘9 p

W Wi wp

O 0., 0

o "i""p
r ,L.,1

oo’ "ii’ "pp
., 1 ,I.
oi’ op) pi

.ﬁepﬁuai

m

K..,K
11 55

K. ,K.,K ,K,
ip’ pi’ po’ io

case linear specific force resolved
into case-fixed axes

case angular rates resolved into
case-fixed axes

gimbal-to-case angular misalignments
float moments of inertia
float products of inertia

fioat center of mass displacements
(in the absence of acceleration)

float mass
direct compliances

cross compliances

%
The subscripts o, i, p refer to output, input and pendulum

axes, respectively.
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- 2.3.1 Single-Degree-of-Freedom Gyros: Angular Motion

Based on an expression derived in Ref. 2 for torques due to

angular motion of the case of a SDF {loated gyro, we can write:

Mong = 1o (O"o+ mo) " (Iii_Iss) wgw; = Hoy

*los [ws ) wowi] J_rIoi [wi+ wows]
2 2 2
+ 1 l:ws- wi:\+Q[wo]
2 2
T % [(Iss—lii) (ws Y ) i st:l

where the term, Quz, has been added to account for the experimentally-
observed effect reported in Ref. 4. We regard the gyroscopic term,

:-Hw as the desired input torque. Thus, terms other than Hw on the
right hand side of Eq. (2.3-2) must be regarded as error torques. The
'term I &0 is the inertial reaction torque corresponding to gimbal-to-case
a.ngular acceleration. In combination with float viscous damping torque,
'_Cao, it is responsible for the basic gyro float time constant, and appears
in the "ideal" gyro model. The term Ioowo is an error caused by the

gimbal output axis inertia and can lead to significant "pseudo-coning"

ra
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errors in systems applications. The other term in the first line,

(Ij; - Igs ) wgwi, iS an anisoinertia error torque which can lead to large
reciification errors during angular vibrations. The product-of-inertia
terms in the second and third lines are probably less important,

but can also generate large constant torques, The terms involving « o

are coupling error torques (since a, is the float angle which results from
all applied torques, principally H wi) and can also lead to large errors.
The terms involving Oy Oy BO and Bi represent the interaction of various
component misalignments with angular motions; the most significant are
the -aSHwO and BonS terms which result when the sensitive axis of the

gyro does not lie exactly parallel to the input axis fixed in the case.

2.3.2 Single-Degree-of-Freedom Gyros: Linear Motion

Ref. 2 provides the following equation for torques about the

;6ﬁtput axis of an SDF gyro generated by linear motion:

) 2 2
Myjp =m0 <6of0 o0 - 6ifs) +m {Ksofofi Kl

L * (Kss - Kil) ffs - Kiglols _Kisfz] (2.3-3) '
Since the only desired torque is the angular motion term, Hwi, appearing
in Eq. (2.3-2), all of the terms in Eq. (2.3-3) must be considered error
torques, The terms multiplying m have the form of mass unbalance.
torques, although the first one, mﬁofo, is thought to be due to thermal
convection effects. The terms multiplying m? are linear compliance

effects.
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2.3.3 Single-Degree-of-Freedom Accelerometers: Angular Motion

Ref. 3 provides the following equation for torques about the

output axis of an SDF accelerometer generated by angular motion:
Mang ™ Too (ao * wo) +(Iii ) Ipp) Wty * Lop (wp " wi)
| 2 2 3 2
Io (w1+ wowp) Ipi(wp- wi)-i-czo(lpp-lﬁ)(ap - wi)
I - —l I
-oy (pp ~ Iii) wowp+100 1J toy (Ipp 111) w w1 “’p

(2.3-4)

Since the ideal accelerometer is insensitive to angular motion,
41l of the terms in Eq. (2.3-4) must be considered as error torques in
‘the SDF pendulous accelerometer. However, as in the case of the SDF
‘gyro, the first term, Ioo&o’ together with any damping torque about the
instrument output axis, is usually considered as part of the unavoidable
-densor dynamics and included in any ""ideal" SDF pendulous accelerometer
‘miodel. The remaining error terms can be divided into several broad
‘categories similar to many exhibited by the gyro. Sensitivity to angular
‘accelerations is present. The principal contribution, that caused by
angular acceleration about the sensor output axis, is unavoidable because
“of the nature of the pendulous acceleration sensing instrument. Several

‘anisoinertia terms and product of inertia terms also appear.
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2.3.4 Single-Degree-of-Freedom Accelerometers: Linear Motion

Ref. 3 provides the following equation for torques about the

output axis of an SDF accelerometer generated by linear motion:
Mlin = mﬁp (fi +a0fp - ozpfo) - mbi (fp +aif0 - aofi)

+m2 [K .f‘.‘Z +K_ 1f +(K -K..)f.f -K. f f -K. fz] (2.3-5)
pii poio \pp ii/ip ioop "ipp

The first term of Eq. (2. 3-5), mépii, measures linear
avc_:'(‘:eleration along the input axis. This is the only output axis torque in
the ideal pendulous accelerometer. The pendulosity mbp is designed into
the instrument with care. All the remaining terms in this equation con~
tribute errors to the accelerometer. The term mﬁpaofp is basically a
cross-coupling error arising from rotation about the single axis of
freedom and md papfo results from gimbal-to-case misalignment. Since
accelerations along the input axis will cause considerable excursions of
the gimbal angle, s from null, sizeable rectification errors can be
produced in this instrument by properly phased linear vibrations with
components along the input and pendulum axes. The second term of
Eg. (2.3-5) illustrates error torque contributions from unwanted mass
unbalance and. the last line expresses compliance error terms. It can be
seen that linear compliance effects can produce constant error torqués.
The error in indicating linear accelerations along the case fixed input
axis of an SDF pendulous accelerometer is simply the sum of all error

torques, divided by the pendulosity, mﬁp.
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2.4 BASIC PARAMETER GROUPS

In this section the error models given above are specialized and
- extended slightly., This development is based on approximations which are
.valid for the closed-loop sensor configuration with low-frequency test
motion inputs. The motivation for this development is to obtain useful
relationships in which the disturbance torque is expresséd as a function
of motion components and sensor parameters which remain essentially

constant over a given period of testing.

The motion-induced error models given above are general in
that they apply to both the open-loop and closed-loop configurations, but
they do not have the desired functional form because of the presence of
time-varying terms « , &, QS and H. The symbol o  represents float
angle which varies in response to all applied torgues, The symbol QS

_represents the rate of change of rotor speed with respect to the gimbal
.- .\'nhich depends on the rate of change of case angular velocity about the

spin axis, @y and the rotor speed control loop dynamics.

When the gyro is torque rebalanced and can be viewed as a
closed loop system, we can write approximate expressions for o, asa
function of certain motion quantities. These can then be substituted into -
the above equations to provide the kind of useful functional relationships

mentioned above.
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2.4.1 Analog Rebalancing

Consider, first, an analog-rebalanced SDF gyro experienc-
ing angular motion. For the purpose of computing the float angle, the

dominant applied torques can be represented by:

ne

M, ¥ -1, .w° - Huy (2.4-1)

The rebalance torque is given by

Mtg = Kao _ (2.4-2)

We restrict our attention to low frequency test motions, so that Mo is
kept very small at all times and Mtg remains an accurate replica of

Ma' Consequently,

-

~r

. o a tg LToo®o ~ Hey * Ko =0 (2.4-3)

-~
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Therefore,

| ]

. H 00 . B
44 ‘—-K w.--K— wo ‘ . (2.4-4)

We substitute Eq, (2.4-4) into Eq. {2.3-2) and drop the term 5, Iss S
r

which is extremely small in practice. The result, after rearranging

terms, is:

M =k, otk +k

ang 1"i 270 37s

) | 9
ag PR w; tRew thgw  +Rawy

+k - + +k, . w
w w kgww wws llu‘ows

3 2 . . 2 2 |
hyguy - Kyguywg Ry g@owg TRy 4@ 5 Kygdy oy (2.4-5)

where kl through l~:1 4 2re defined in Table 2.4-1{a). We shall call these

coefficients basic parameter groups. Table 2.4-1 divides them into four

types, p, A, v and p, according to whether they multiply functions
involving angular accelerations or functions which are linear, quadratic
or cubic in angular rate, respectively. These classifications are useful
in organizing both the analysis and the display of results concerning

observable quantities and testing errors (see Chapfer 3).
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TABLE 2.4-1
BASIC PARAMETER GROUPS

’ Angular Motion Type ]
' a) Gyro b) Accelerometer
k1=INE_-asloo Ry =Ty = el
k2 * loo k= oo s
%3 " os * %itoo kg = Top * 2400
B —k; B T T
k5 =-g H A
kg= 8 H
kp=-Igg -5 (Issr - ) ky= 'Ipl
ky=Q
ko = 'losg ray (Iss - Ill)* By (Isar - Icoor) kg = 'Iop + oy (Ipp - Iil) Y
ko = -H/K - (1, - 1) teg = (1 = 1)
TR (Iss ]i.l) kg=Tg - o5 (Ipp - ]Ll)
(@R (L,-n) T T ] o
A 2 [ _H_
kyg = (Iooh{) (Iss B Iu) kg = ( oo/K) (IPP ) 111)
Linear Motion
¢} Gyro d) Accelerometer
kl = mﬁs k1 = mup
B k2=m60 kzt-apmﬂp* “imbi A
1;s = -m&i | k3 = -mb,
BT ks @) ey o omi, |
k = -mK,, kg = -m’x'p .
kg = mK__ kg = mzxpo ¥
Ky =0 (K, - 5y) kp= (/K)o + n? (K -Ky)
kg = "mleo ky = -m Ky,
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ST Except for the fact that H appears in several of them, all of
the groups defined in Table 2.4-1 are functions of sensor parameters

which remain essentially constant* over a given period of testing, We

can write:
H =1 Q
ss_ S
— r
‘;:.2'_'.“." = I 0 +AQ
. S5y ( Snom S)
= H +I  AQ, ) (2.4-6)

nom S8 5
r

e

where AQS represents the deviation of rotor speed with respect to the
gimbal due tc a dynamic lag in the action of the rotor speed control loop.
The resulting variations in k, kg, k, ko and kiS will cause extremely
small variations in the corresponding torque components appearing in

Eq. (2.4-5). These can also be dropped, permitting us to treat most of
12:_1_1_3, basic parameter groups as constants. The exception is the gyroscopic

term, Haw,, which becomes:

S

Hwi = Hnomwi+IssrAsti (2.4-7)

YLooo.

*

We have assumed here that float axis misalignments (o, ag and ayp)
and rotor axis misalignments (83 and B,) are constant. If future results
indicate that these quantities significantly vary due to case motions, the
only changes in this development which are likely to be significant
involve the kg and kg terms in Eq. (2.4-5) and the ko term in Eq. (2.4-15).
The affects on k1, k3, k7, kg and kq1 in Table 2.4-1(a) and on ky, k3, kg
and k7 in Table 2.4-1(b) will be very small if the misalignments are of the
order of arc seconds.
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The second term in Eq. (2.4-7) is zero except when the applied test
motion involves both w, and a rapidly varying Wge Therefore, most of
the time the parameter groups defined in Table 2. 4-1(a) can be con-
sidered constants with H = Hnom‘ For example, with a vibratory angular
motion about the spin axes, if the frequency of vibration is low compared
to the wheel hunt frequency (typically a few cycles per second), A S =0
and Hwi = Hnomwi' If, on the other hand, the frequency of oscillation is
considerably above the wheel hunt frequency, the rotor speed variation

will become:

AQ_ =~ w (2.4-8)
That is, w s is varying so rapidly that the speed control lobp cannot follow
it at all (see the more extensive discussion in Ref. 2). Consequently,

-

Hoy = Hpom®; - Issr"”i""’s ‘ (2.4-9)

and the "extra' term can be added to the kl(}wiws term in Eq. (2.4-5).
In summary, all of the parameter groups defined in Table 2.4-1(a) can
be considered independent of test motion frequency except k, 0’ which

varies from:

= _ nom _ _ _
ki, = = (ISS Iﬁ) | (2.4-10)
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for angular oscillations about the spin axis which are well below the

wheel hunt frequency, to:

- .| hpom) _ - T _ 4-1
k10 K (Iss Issr Iii) : (2.4-11)

for oscillations well above the wheel hunt frequency.

s The expression of the applied torque in the form of Eq. {2.4-5)
leads to a testing concept in which the data processing portion of the test
procedure is divided into two parts. In the first part the gyro output data
from a sequence of tests is processed so as to determine values of the
basic parameter groups. The second part is a purely algebraic problem
in‘“which the basic parameter groups are provided and the individual

parameters appearing in the expressions in Table 2.4-1 are to be extracted.

; The first phase is crucial because it bears on the choice of test
5mot1ons and determines test accuracy and useful test duration. Note,

for example, that some basic parameter groups appearing in Eq. (2.4-5)
cannot possibly be found by applying a constant rotation rate since they
“multiply angular acceleration terms (&, &g, wg). This indicates that if
all parameter groups are to be determined, the testing program must

include some motions more complex than constant rates.

In the second phase some of the parameters can be found
algebraically and some cannot, but there is no way in which unusual test

motions can be used to separate the effects of individual parameters which
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appear in a given group. For example, consider the single term from

* Eq. (2.4-5) involving the product, w_w_.

Ky1@otg = Ic:ig""o""’s Tl (Iss - Iii) wos (2.4-12)

No matter what time history of Wg and w s is appliéd to the gyro case, the
term involving I,; and the term involving o s will both remain proportional
to the product, W, Wes and their separate effects cannot be distinguished.
However, if values for both kl and k11 (see Table 2.4-1(a)) have been
determined, and if Io and (Iqq - Ij;) are considered known, then values

for Ioig and o can be determined algebraically.

It should be noted that we could have started with an expression
like that of Eq. (2.4-5), without assuming any knowledge of the physical
causes of error torques, and simply set out to design a testing procedure
which would determine values of the coefficients of the various motion
functions. This corresponds to the first aﬁproach mentioned in
Section 2, 2.

For an SDF accelerometer basic parameter groups defined in

Table 2.4-1(b) correspond to the following expression for torque due to

an angular motion:

' — - [ L] 2 2
Mang ~ klwi+k2wo+k3wp+k4wi —k4wp
+kww+kww+kww+k w2 k&
D 67i"p T op 8% 8% p
(2.4-13)

34



THE ANALYTIC SCIENCES CORPORATION

where we have made use of the approximation:
o = - 99 (2.4-14)

-which is analogous to Eq. (2.4-4) in the SDF gyro case. For the SDF
gyro undergoing linear motion:

Fares -

_ 2
Mlin - klfi +k2f0 i k3fS tky 5fs

£2 4k
1 _
*kgff A+ T (2.4-15)

where the corresponding basic parameter groups are defined in Table

2. 4-1(c). For the SDF accelerometer undergoing linear motion:

_ , 2
My = Kyl S Hkat 4f12 +kgl
+k6fii0 +k7fifp + kaofp (2.4-16)
where we have used:
613
OEO = m —K fi (2.4-17)

méifd the corresponding basic parameter groups are defined in
'_I"ab_le 2.4-1(d).
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2.4.2 Pulse-Rebalancing

The basic parameter groups defined in Table 2.4-1 may be

- valid for some pulse-rebalanced sensors as well, even though Eq. (2.4-2)
is no longer true. In some —cases th-e float angle, Qs experiences a high-
frequency limit cycle* superimposed on a slowly changing "signal" value
which follows quite closely the applied test motion. According to dual-
input, describing-function theory (Ref. 5) the nonlinear torguing logic
operates on these low frequency signals, which occur in the presence of
the limit cycle, almost as though it were a linear gain. Therefore, we

can write:
Ma = - te = -ng NB th a, (2.4-18)
where:
e K, = the signal generator gain
th = the torque generator gain
NB = the effective gain of the nonlinearity

as seen by the "signal",

and the overbars indicate time-averages taken over intervals which
are long compared to the limit cycle period but short compared to

% -

-This is usually true in the binary-torquing case and for gyros with
time-modulated torquing; it is usually not true in the ternary-torquing
case. See Ref, 2.
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fe'st motion variations. It follows that, for the SDF gyro experiencing

angular motion:

H Ioo |
% =K YUK % (2.4-19)
P p

where Kp is the effective pulse-rebalance loop gain:

-~ e .

Kp = ng NB th (2.4-20)
_qur the SDF accelerometer experiencing only angular motion:
inin T . a, = g 9 (2.4-21)
LETLUL ' p
For the SDF accelerometer undergoing linear motion alone:
mb ‘

Equations (2.4-19), (2.4-21) and (2.4-22) can be substituted
into Egs. (2.3-3), (2.3-4) and (2.3-5). When this is done we obtain the
same error torque equations and basic parameter groups as in
Section 2.4.1. These equations ignore certain high frequency, zero-
average cross-coupling torques associated with float angle motion caused

by the limit cycle.
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2.5 TEST MOTION POSSIBILITIES

_ In order to determine values for all basic parameter groups
appearing in Eqs. (2.4-5), (2.4-13), (2.4-15) and (2.4-16) it is necessary
to choose a sequence of test motibns which excite the various terms in
these equations in such a way that their individual effects can be separated
and measured. An important consideration in this choice is the desirability
of keeping the test motion equipment as simple and accurately controllable
as possible. For the angular motion-induced terms of Egs. (2.4-5) and
(2.4-13) it is necessary to specify a set of time histories of angular
velocity components (wj,  wg, Wg ). These cannot be confined to constant-
rate tests alone since there are a number of terms involving angular
accelerations (@j, o, tg) which must be excited. For the linear motion-
induced torques of Egs. (2.3-15) and (2. 3-16) it is necessary Lo specify a

sequence of specific force (f;, f,, fg) time histories.

Consider the following list of possible motion functions which

are discussed, in turn, below:

e Step functions (constant angular rates and constant
specific force components)

¢ Ramp functions (constant angular accelerations)
e Sinusoidal oscillations (angular and linear vibrations)

0o (a) motion about or along a single case-fixed axis
- (b) osecillations about two axes with arbitrary phase
(c¢) oscillations about three axes with arbitrary phases

¢ Combinations and special functions

Note that two- and three-axis in-phase oscillations are actually single-
axis oscillations where the axis is chosen to produce a specified ratio

between principal axis components. (For exampie, angular oscillation

.o
{.
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about a line midway between the input and spin axes of a gyro with rate

W sin wt, produces the principal axis in-phase oscillations,

Wy = wg = (W//2) sin wt.

Constant angular rates may be applied to inertial sensors by
conventional laboratory test tables. Special mounting fixtures are
required for various "combined-rate' tests., For example, if equal ‘input-
axis and spin-axis rates (w; and wg) are desired simultaneously, the
gyro must be mounted with the line midway between these two axes coincident
with the test table axis. Constant specific force components may be obtained
simply by placing the sensor in a given orientation in the earth's gravi-
tational field. Alternatively, it may be centrifuge tested at a higher g-
level. (This produces a combination of constant angular rate about the
centrifuge axis and a constant specific force, somewhat complicating
matters.) These tests are all useful and are commonly performed in
tééiing inertial sensors, Their major limitation is that, in testing for
angular-motion-induced errdrs, they cannot excite all of the terms appearing
in the error model equations. It is clear, therefore, that some test motions
from the last three items in the above list should be included in a complete
testing program.

- T
[ ~

N Angular-rate ramp functions, involving coﬂstant angular
a‘_r:éelerations, could be used fo excite the terms which are not excited in
constant rate testing. Supplying such motions would require the operation
of standard test tables in an unconventional way, and it would be difficult
to maintain a significant acceleration level for a long period of time
because of the high rates which would be reached. There would also be
serious data processing problems because of the continuously increasing
torque levels associated with various parameter groups. For example, a

constant angular acceleration about a gyro output axis would cause a
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_constant torque, ko, [See Eq. (2.4-5).], and a linearly increasing

- torque, kgwo, and a parabolically increasing torque, kswon

Angular and linear single-axis sinusoidal oscillations are
standard test motions wh1ch may be obtained using conventional techniques.
Since first and higher der1vat1ves automatically oceur as sinusoids, all

:-_tgrms in the error models can be excited by a sequence of sinusoidal
oééillations about various axes. As with ramp functions the torque levels
during sinusoidal motion are continuously changing. However, they are
cyclically repeating, affording the opportﬁnity to average data over many
cycles, The data processing procedures required to separate and measure
the effects of various parameter groups during such testing are developed
in some detail in Chapter 3. (They represent a considerable increase over
those usually employed in test procedures which seek only to measure
average effects,) It is demonstrated that a particular sequence of six
smgle axis vibration tests, each using a different test motion axis fixed
m case coordinates can theoretically be used to isolate and measure all
terms which appear in the error models we have adopted. (Some effects,

~ such as torques associated with k12 and kl 4 are extremely small and

.probably cannot be measured in practice in low frequency testing. But if

rth.*ay are too small to be measured, they are also likely to produce insig-

;n_iﬁcant errors in operational systems. On the other hand these effects

T_gh@mld be reviewed in later considerations of high frequency testing, )

Because a program of single-axis testing which includes constant

_zi.hgular rates and oscillatory motion has the capability mentioned above,

“multi-axis out-of-phase testing and angular rate histories which are
combinations and special functions of time have not been studied in detail.

Multi-axis test tables capable of supplying cut~of-phase angular motions
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are available and these should, of course, be used to check against

~ predictions based on single-axis testing. However, a major conclusion

of this study is that for strapdown inertial sensors éon_siderable emphasis

should be given to single-axis low-frequency testing.

The ultimate simplicity and usefulness of single-axis low-

frequency testing will depend on the extent to which:
¢

s all motion-affected error torques, including those
not covered in the error models presented here,
are frequency independent.

¢ It is valid to treat pulse rebalancing electronics as
linear components in the fashion outlined in
Section 2.4.2.

e it is possible to predict the significant system errors
from the results of single-axis low-frequency tests.

A combination of experimental evidence and further analysis is needed

in order to properly guage these matters.

Chapter Summary — Error equations for single-degree-of-

freedom (SDF) gyros and accelerometers are developed for the special
case of closed-loop low-frequency testing. The resulting expressions for
torques applied to the .instrument output axes are linear in a Set of "basic
parameter groups' defined herein. The expressions for angular-motion-
induced error torques include fourteén such parameter groups for SDF
gyros and eight groups for SDF accelerometers. The expressions for
linear-motion-induced error torques include eight groups for both SDF
gyros and accelerometers'. The parametier groups are further divided
into four categories, according to whether they generate error torques

proportional to angular acceleration or linear, quadratic or cubic,
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‘respectively, in anéular rate or specific force. These classifications
are useful in organizing both the analysis ‘a‘.niimthe display of results

developgd in the following chapter.

: Potential test motions are reviewed and qualitatively compared
_in light of the applied torque expressions mentioned above. A major con-

. clusion is that theoretically the effects of all parameter groups can be
-observed separately using test motions which involve angular accelerations;

-it is not necessary to resort to multi-axis, out-of-phase test motions.
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3. SINGLE-AXIS, LOW-FREQUENCY TESTING

" This chapter presents a detailed study of single-axis, low-
frequency testing, including sinusoidal vibration testing and constant
angular rate testing. A particular set of sensor orientations with respect
to the motion axis are recommended and the information which may be
extracted from each test is outlined for angular and linear vibration tests
as well as constant rate tests. Test accuracy, useful test duration and
tféét data processing are investigated, with emphasis on the angular motion

case. Example calculations are given at the end of the chapter.

3.1 OBSERVABLE QUANTITIES

This section identifies the quantities which may be observed as
a result of single axis tests and the basic parameter groups which may be
determined from the quantities observed during particular types of test
sequences and combinations thereof. The following types of tests are

c__gPsidered:
- ¢ Constant Rate Testing
a ¢  Sinusoidal Testing, Averaging
o Sinusoidal Testing, Harmonic Extraction
The last two involve the same test motions, but are distinguished by the data

processing performed. In sinusoidal averaging the only measurement is of

the average torque over many cycles, yielding information about constant
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-torque only, part of which is due to rectification of dynamic effects. In
sinusoidal harmonic testing the time-varying output signal is processed
to yield additional information. Results are summarized in

Section 3 1.3.

3.1.1 Vibration Testing

A general single-axis angular vibration of amplitude W and
_frequency w can be represented by the following three equations:

e Wy = ciWsin wt (3.1-1)
- W, = €, W sin wt (3.1-2}
wg = g W sin wt (3.1-3)

Lo

.where ¢ c0 ang cg are the direction cosines relating the vibration axis

. to the input, output and spin axes of the gyro being tested. It is shown in
Appendix A that when Egs. (3.1-1), (3.1-2) and (3.1-3) are substituted
cinto Eq. (2.3-5), the resulting expression for applied torque is a periodic
- ‘function represented by a 7-term trigonometric series of the form:

e o '

S Mang = B+ S1 sin t + 01 cos wt

+ 82 sin 2wt + C2 cos .Ewtf

+ S3 sin 3wt + 03 cos 3wt (3.1-4)
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When three similar equations representing accelerometer case motion
(involving w N and cp rather than W and cs) are substituted into Eq. (2. 3-5),
a similar periodic function of the form of Eq. (3.1-4) is found. This
result is also developed in Appendix A. In both cases, expressions for
the coefficients, B, SI’ Cl’ etc., in terms of the basic parameter groups

and the quantities defining the test motion have been derived.

Figure 3. 1-1 illustrates the general situation for a single-axis
angular vibration test. The first block represents the motion-induced
torque model developed in Section 2. 4; its output, Mang’ can be viewed
as a 7-term periodic function of the form of Eq. (3.1-4). Added to this is
a constant torque, M c? which exists in the abslence of the applied angular
bias and Mlin’ defined in Eq. (2.3-1)

and a small additional torque due to the angular rotation rate of the earth.

vibration, It consists of the terms, M

Since the only applied test motion is an angular oscillation, the linear-
motion-induced torque is determined by the sensor's orientation in the
earth's gravitational field. This torque can be held constant by orienting
the vibration axis or "test axis' in the vertical direction. The complete
applied torque, Ma’ is, therefore, also represented by a T-term function
of the form of Eq. (3.1-4) in which the bias coefficient, B, includes the
constant, M,, as well as the average (rectification) torque resulting from
the applied sinusoidal angular motion. Since the test motion frequency has ‘
been assumed to be low compared to gyro loop dynamics, the torque
generator output is represented by the same 7-term function. The gyro
dutput e, is a scalar function which is proportional (ideally) to the torque |
Vg
seven Fourier coefficients which define the input periodic function Ma(t)’

Therefore, a harmonic analysis of the output data should produce the

For any given choice of sensor orientation with respect to the test axis

there is a set of seven such coefficients which are the observable quantities
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Figure 3,1-1 General Single-Axis Angular Vibration Test

for that particular test. Estimation of these seven quantities requires a
more sophisticated data processing procedure than the conventional one cf
measuring average drift rate over a long period of time (which is simply

the measurement of B, the first of the seven coefficients).

Consider now the six test orientations pictured in Fig, 3.1-2,
In three cases the sensor is mounted with one of its principal axes coinci-
dent with the test motion axis. In the other three cases the sensor is
mounted with a line midway between two of its principal axes coincident
with the test axis. These pictures apply to a SDF gyro or SDF accelerom-
eter, depending on whether the third principal axis is labeled s or p.
Tables 3.1-1 and 3.1-2 present expressions for the seven trigonometric
coefficients which correspond to each of these six test axis choices for both
instruments. Each Fourier bias coefficient, B, includes a constant torque
term, Mc’ which represents the disturbance torque which exists in the

absence of the test motion. It is a function of orientation, temperature, etc,
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THE

TABLE 3.1-1

FOURIER COCEFFICIENTS: GYRO ANGULAR VIBRATION TESTS

8 5, < 5 cy - 8y Gy
.} —.Tent Motion 3 \ 1
' ('M°+ L wz) (1w+ .:.,wﬁ) ("Clww *hey W ) (“32 “ ) (‘ i wz) ('i ’ws) ("Cs“’ws)
b 1 1
Te Watn ot “co"i"awz kW oW 0 -ilnaw2 o 0
- W 1 1
w, ¥ W ain ot Mca-ik.,w" kW KguW o i"v“’z o 0
- 1 3 1 1
@ W etn ut Mc;fk'l'wz xwedi v X, W 0 Wt | gk, W 0
1 1 1
w_ =W M o+ -k — (kv k, )W wg [~k tk
| % ® cosi( Ui _1( k)w ﬁ( kS) 1 ow? I( TR 0 Lo ew!
w A kgtkg 513 R
e ot 2 Ly ! by W2 8
2 Ky YAt *Kyq
. 1 1 1 1
lwze, “cin*if(k'r"“s 7 (kg g J—z—("l"‘z)‘“w . -l
.. A owt Ly uw?
2wt w? 3 3 1 o W 12 14
+ K, W +—k + 8./2 8/2
S “n) A i ‘.‘9)
eri .
1, of 1 1 1A
M. +3k L (ki YW 2l oW ) Ay 0 0
.4 sn wt c"'z 10 ,J'z_ ( ¢ ‘) ﬁ( t 3)@ 10
J2

Otherwise, all of the coefficients are functions of the test motion quantities
and the basic parameter groups only. The bias term, B, is the "dc¢"

level of the output waveform and represents the conventional, average
torque measurement, The other coefficients are generated by a harmonic

analysis of the "ac" portion. These expressions were obtained by



N THE ANALYTIC SCIENCES CORPORATION

TABLE 3.1-2

FOURIER COEFFICIENTS: ACCELEROMETER
ANGULAR VIBRATION TESTS

B (o] Ca Ca
Y Y we 3
Test Motion (Mc+§Wz) (uclwW+uc3 st) (-§ W) (HCI ww)
wo = Wsin wt MC kzww 0 0
o
Lk We Ly wi 0
wp:WBinmt Mcp‘§k4w kaww |
1w - 1 Lk, w? 0
Wy = Wsin wt Mci+§k4w2 klwW gk,
W = w
L 1 1 1 3|1 2 1 3
: M -1 s 3R | kg v k) uW - ki W K, - kYW | —— kW
B W Cop 3(4 7) ﬁ(kz 3) BJ—E— 8 3-(4 7) 8./_2- ]
Urrze— ginwt
)
1. %o
pes 1 W | 1 3|1 W | .3
M - k, -k —_—k, + K, YW + wW k, -k Ko wh
__W ] cio 2(4 5) ﬂ(l 2) 3ﬁk8 1(4 5) Bﬁ a
- —_——sing..t
N
L 1, o2
1 2 1
) M vk W —(k +k)ww -1keW 0
N [ s 1 3 ]
=¥ ginwt ip I
I P ﬁ

speé_ializing the general expressions derived in Appendix A. For example,

for 3 test motion axis midway between the input and output axes we have:

1
0
Il

1//2

i

c = 1//2

o

¢, = 0 | ‘ (3.1-5)
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Therefore, in the case of the gyro, the expression for the coefficient of
the sin 3 wt term [Eq. (A-5(f)] becomes

-

- = --E@k wo (3.1-6)

The output data from a sequence of six tests on a given instru-
ment can be processed to yield an array of 42 observable quantities. If
the six test axes are those pictured in Fig. 3.1-2, the 42 quantities cor-
respond to the expressions given in Table 3.1-1. Examination of this
array of expressions shows that, for a given test amplitude and frequency,
knowledge of these 42 quantities is more than enough to determine all of

the basic parameter groups, k., through k1 4 All six tests are required,

but the complete set of 42 obselrvables provides a considerable amouni of
redundant information. The testing concept outlined in Section 2.4 can now
be made more definite as shown in Fig. 3.1-3. The gyro data may be
processed (stage Ia) on-line to produce the seven observable quantities
{Fourier coefficients) during each test or it may be recorded for sub-
Sequent off-line vrocessing. In either case, the next data processing
stage, Ib, is an off-line stage in which 42 linear algebraic equations are to
be solved for 20 unknowns; 14 basic parameter groups and 6 constant tor-
é@éé, M,. Approaches to the solution of this over-specified problem are
discussed briefly in Section 3.4. The final data processing stage, II, is
ﬁhé purely algebraic problem of solving for individual parameters, given

values for the basic parameter groups.
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F‘igufe 3.1-3 Data Processing Phases: Single-Axis Vibration Testing
m Table 3.1-3 presents expressions for the observable quantities
(Fourier coefficients) which correspond to linear vibration tests in which
the vibration axis has the same relationship to the sensor axes as in the
sﬁha“ﬁ?g‘ular vibration tests described above* - For these linear vibration
tests the test axis is chosen to be horizontal so that the specific force along
the test axis has a sinusoidal form with zero average. The constant tor-
que; M, includes the usual bias term, M. ., a small term, Mang’
associated with the constant earth rate and a term associated with the
constant gravitational field. The number of observable quantities for each
test is three, corresponding to three-term trigenometric functions which
are derived in Appendix A for single-axis linear vibration tests. In both
csses (gyro and accelerometer) the set of 18 observable quantities is more

than enough to determine all basic parameter groups.

Inspection of the expressions tabulated in Tables 3.1-1 through
3 1-3 reveals that, for both SDF gyros and SDF accelerometers, complete
sets of basic parameter groups may theoretically be extracted from a

sequence of six angular and six linear vibration tests. The angular

- _
In the case of the gyro it will be extremely difficult in practice to
measure the mass unbalance terms (ky, ks, k3) because of the small
angular motions which must inevitably be present. Extraction of these
coefficients is performed quite satisfactorily during simple tumble tests.
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TABLE 3.1-3

FOURIER COEFTICIENTS: GYRO AND ACCELEROMETER
‘ LINEAR VIBRATION TESTS

B s C2
' ‘ Y .2 1 ¥ .2
Test Motion (Mc*g A ) (L A) -3 A )
a = Asinwt Mco koA 0
s 1,2 1,2
as,p = Asinwt MCE + -z-ksA k3A 2k5A
B 1, .2 . 1, .2
ai-ASinwt Mci+§k4A _ klA --2—k4A
a =a
2 %P 1 2 1 1 2
: A Mcos +7(ks + Kg)A E(kz”‘s)"‘ ~q(ks +kg)A
: = =— gin @t
J2
a; =g,
1 2 1 1 2
A Me (kg r ko)A e (ky +Xg)A - (kg 7 kg)A
= i ginwt
NE)
a, = a
o IR M, +a(k, + ke +k)AD | = (kv k) A | - Tk, v kg v ko)A
A RS AT R 7) ﬁ(1 3) 7 (kg + k5 + k)
- =———sinwet
- J‘z_

]

vibration tests should be conducted with the vibration axis (about which the
sensor is rotated) in the vertical direction. The linear vibration tests
should be conducted with the vibration axis (along which the sensor is

accelerated) in the horizontal plane,
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3.1.2 Constant Angular Rate Testing

" When a constant angular rate is applied about any axis fixed in
the sensor, the resulting applied torque 1s a constant. A general constant -

rate of amplitude W can be represented by the equations:

_-' w; = ciWV (3.1-7)
By w, = ¢, W (3.1-8)
wgp = Csp W (3.1-9)

For ziny values of the direction cosines the resulting expression for the

form:

M, = M_+\W+ YW + oW (3.1-10)

Table 3.1-4 expresses the coefficients, A, ¥, and p, in terms of basic
parameter groups for the six test motion axes shown in Fig. 3.1-2. In
each case the Mc term represents the constant torque which exists in the
absence of an applied angular rate (i.e., when W = 0). For each test axis
i‘_t"ishnecessary to measure torque for three non-zero values of W in order

to ‘éeparate A, ¥ and p terms.

Inspection of the left hand (gyro) side of Table 3. 1;4 shows that
estimates of the A terms lead directly to estimates of the parameter groups,
k4, k. and k6, and estimates of th_e v terms lead to the groups, k7rk3»kg: k
and kll' For accelerometers the X terms do not appear while the y terms 1ead
to estimates of the groups, k 4’k5’k6 and k.7 (These groups are defined in

Table 2.4-1.) =

[}
Y

-

- 53



THE ANALYTIC SCIENCES CORPORATION

- TABLE 3.1-4

APPLIED TORQUE EXPRESSIONS: CONSTANT RATE TESTING

. T
M =M + W+ W2 + pW
Test a e Y p
Motion Gyro Accelerometer
=W M +k W+ kW M
wo cu 5 8 co
=W M. +kW - kW M - kW
Ys, p Cg 6 7 Cp 4
- - 2 3 T, T
2N w Mci +k,W+ k7w + klzw Mci . k4W
j : kg +k "k +kg +k -k, +k, ]
F g g WA M, |28y |28 2 w | etk
LD Cos J2 2 Cop 2
. . k, +k k +k + k, +k.]
: -;wi._.wo.__w/ﬁ M, + B S PP k9 w M+ |-2 8|2
N o [ /7 | 2.n‘ % | 2 |
k,+k k k
ety =g = WASE M, + 4 ly . 200g2 M, +Tﬂw2
’ is Na 2 ip

| v3,1.3 Summary: Angular Motion Test Observables

[l
B4 papew or

Table 3.1-5 identifies the gyro parameter groups which may be
determmed as a result of each type of testing considered. A sequence of
constant rate tests is capable of determining all groups except the so-called
| "u terms" (k k2 k3,k13 and k 4) which are associated with angular
_‘acceleratxon A sequence of sinusoidal averaging tests is useful only in

'determlmng the "y terms" (k7, k, kg,k and k A sequence of sinus-

8’ 10 11)
oidal harmonic tests is capable of determining the full set of parameter

groups, as previously discussed. Thus, a combination of constant rate
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"TABLE 3.1-5

DETERMINABLE GYRO PARAMETER GROUPS:
ANGULAR MOTION TESTING

Sinusocidal Testing,
Harmonic Extraction
Constant Rate s,‘r"::t‘i’:lf 5y =AW C, =puW
MM, SRyt pus B :Zﬁggnfwz 5, = fuaW’ Cy=-gyW
s;=§pw3 c;=igww3
- B terms ] ]
. iy, Ky Ky, Ky, Ky No No Yes
. X terms
r- __k4, k5’ " Yes No Yes
15¥ terms
do0 kg kg kg, Ky, Ky o Yes ' Yes Yes
: EE "terms
okt Yes 3 No Yea
- ‘ﬁ;.lmber of runa required 12, (15) 6 [}
*Very small: probably unobservable in practice,

.-

tésts and sinusocidal averaging tests yields no more groups than those found
in-constant rate tests alone, but does provide independent measures of the
¥, or rectification, terms. Similarly, a combination of sinusoidal harmonic
testing with the other types yields no more groups than those found in
harmonic testing alone, but does offer the advantage of independent measure-
ments of A, ¥ and p terms and, therefore, additional cross-checking
opportunities. The relative accuracies of the different testing methods are
compared in Section 3. 2. 1.
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- parameter groups k12 and k
“"therefore, likely that the cubic terms {pterms) in constant rate testing

* and the third harmonic (S3 and Cg) in sinusocidal testing can be ignored in
'-ipractice'. It is also worth noting that both k., and k

As illustrated in the numerical examples of Section 3.5, the

14 are expected to be extremely small. It is,

1 11 are approximately

" equal to Ioig and that both k3 and k9 are approximately equal to Igg g
Consequently, there inay be fewer significant quantities that cannot be

measured during c_onstant rate testing than is suggested by Table 3.1-5.

Table 3.1-5 also shows the number of test runs required in each
sequence, The constant rate tests will probably require two non-zero rates
Cfor-each of the six test axes shown in Table 3.1-2 in order to separate the
‘A -and y terms, making a total of 12 runs. Theoretically, a third rate is
“required for the three test axes where a cubic (p) term appears, ma.k:‘mg a
-total of 15 required runs. In practice the cubic terms wiil probably be

"--ir'gAnored. The number of runs listed in Table 3.1-5 under constant rate

<testing is 24, rather than 12, because each set may be repeated with the
sensor re-mounted after a rotation of 180 degrees about the test axis, This
would be done in order to correct for a misalignment of the table axis.
7 Sinusoidal testing entails only one run for each of the six test
axes, making a total of six required runs. In practice, for sinuscidal
"harmonic testing each test will probably be repeated with the sensor re-
- mounted, as described above. Therefore, the number of required runs is
stated as 12, The number 6 is maintained for sinusoidal averaging since

table axis misalignment does not cause a constant error torque,
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Under the assumptions of our error models {all parameter
groups independent of test motion, etc.) no new information is gained by
running a sinusoidal test at varying frequencies or amplitudes. In
practice, of course, it would be desirable to vary these test motion quan-
tities in order to check the consistency of the results and to see if and

where the error model breaks down.

3.2 SINGLE-AXIS TEST ACCURACY

Procedures which involve sequences of single-axis tests were
outlined in the previous section. The objective of these test sequences is
to obtain measurements of a set of basic parameter groups which cause
motion-induced error torques. The measurements cannot be perfect for a
number of reasons. The sources of test errors are analyzed in this sec-
tion and relationships between error sources and test accuracy are

developed.

3.2.1 Overview and Comparison

Test error categories are listed in Table 3.2-1 and discussed
briefly below. More detailed discussions are given in following sections.
It should be noted that "measurement errors” are associated with the tor-
que rebalance path of the gyro itself, which is used to determine the nature
of the applied torque time history. "Motion errors" are associated with

imperfections in the motion supplying devices.

Table 3.2-1 indicates which tests are significantly affected by
various types of test error. A zero entry in the table implies that the

source in question is expected to contribute negligibly small errors to
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TABLE 3.2-1

TEST ERROR INFLUENCES

_ , Constant Sinusoidal Sinusoidal
Test Error Categories Rate Al eragin Harmonic
Testing Veraging Testing
Test Motion Errors
Magnitude
1. Bias 0 4 Bi A,y
2. Waveform Distortion NA* 0 TRY
3. High-Frequency Noise 0 v oA,
Misalignment
4, Bias-Fixed - A 0 by
5. Run-to-Run Shift A, ¥ NA NA
6. Table Wobble \,¥ 0 1]
Measurement Errors
7. Quantization b LY v [T WY
8. Torquer Scale Factor Error ALy ¥ M A, Y
g, Torquer Nonlinearity A, v Wy Ay Y
10. High-Frequency Noise Ay b4 Wy A, Y
Parameter Changes
11. Run-to-Run Shifts A,y NA NA

*NA = Not Applicable,
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‘estimates of the parameters in question. An "NA' entry stands for "hot
"applicable)” For example, distortion of the applied test motion waveform

“is not a problem for constant rate tests. A Greek letter or letters
appearing at a particular location in the table indicates which types of
coefficients will suffer significant estimation errors due to the error
source in question. The following paragraphs provide brief discussions of
various test error source categories and references to detailed treat-

ments in succeeding sections.

Test motion bias errors are constant errqrs in fche knowledge of

the applied test motion amplitude or of the orientation of the test axis.
Test motion bias errors change the values of the observable quanﬁties
being measured. Since calculation of sensor parameters is based on
assumed test motions which are different, they are in some error. These
effects are discussed in detail in Section 3.2.2 and Appendix B,  The
error in the knowledge of test motion amplitude, in constant rate testing,
is expected to be negligibly small because table rate is determined from a
x_h-eaéurement of the total time required for an integral number of test
table revolutions; this can be doﬁe very accurately. The effect of a fixed
test axis misalignment error on the u and y terms during sinusoidal
testn*g is negligible, as shown in Section 3.2.2. A shift in the misalign-
ment error between two constant rate tests, for a given test axis orientation,

z;ffects both the X and ¥ estimates, as shown in Section 3.2.2.

Cyclically repeating test motion errors, such as table wobble or

distortion of the applied sinusoidal motion, give rise to harmonics in the
applied torque time history. In constant rate testing the table-wobble
effects may rectify and change the average torque measurement. These
errors are discussed in Section 3.2.3. Other examples of cyclic test

motion errors are linear vibrations occurring during angular vibration

-

éu
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tests (due to an off-center test axis) and angular vibrations occurring
during linear vibration tests (due to unwanted '""rocking’ motion). The
former might be significanf when subjecting an accelerometer to angular
-vibration testing; the latter will be very significant when subjecting a gyro
to linear vibration testing. |

-~

Errors due to quantization can arise in testing analog-rebalanced

‘sensors as well as pulse-rebalanced sensors, In the first case this will
happen whenever the continuously varying torquer input signal is converted
-into digital form for data processing. As with a pulse-rebalanced sensor,
the test data becomes a sequence of integers (pulse counts) which represent
dhe integral of torque over particular time intervals. One count represents
the basic quantization interval or data resolution level in units of torque-
times-time (e.g. dyne cm sec). All parameter estimates are affected by

‘this quantization. This problem is discussed in detail in Section 3. 2.4,

......

Random high-frequency fluctuations in the applied test motion can
‘be viewed as "process noise’ affecting the entire test procedure. This

-together with similar fluctuations in measurement errors or ""'measureinent
noise" places a limit on the achievable parameter estimation accuracies.
(dn some cases the quantization process is effectively a contributor to mea-
;“silrement noise. Besides that contribution there is the difference between -
;;t_he_a.ctual physical torque generated (or its integral over an interval) and
-its indicated value. All Fourier coefficient estimates are affected by these
- -errors. They are discussed in Section 3.2.5 and Appendix C. In the case
-of constant rate testing, while the applied rate may fluctuate about its
-average value, the average will be known with negligible error, as dis-

cussed above. The first order effect on the estimated parameters will
-also be negligible since the integrated effect of positive deviations will

exactly counteract the integrated effect of negative deviations.
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- Cyclically repeating measurement errors are the result of fixed

rebalance loop errors such as torquer nonlinearity or torquer scale-factor

error. The "odd-nonlinearities' affect constant rate testing and the
measurement of the y terms in sinusoidal harmonic testing. The "even

~ nonlinearities™ affect sinusoidal averaging and the measurement of the X
and y terms in sinusoidal harmonic testing. These effects are discussed

in Section 3.2.86.

""" The shift in sensor parameter values between two constant rate

tests with a given test axis orientation affects both the A and ¥ estimates,

in much the same way as a shifted misalignment error afiects them. These

| Table 3.2-2 repeats the format of Table 3.2-1, but supplies
moré'detail in the form of error formulas. These formulas express the
errors in estimating the y, A and y terms as functions of the error sources,
the test motion quantities, the sensor parameters and the test time. For a
givéxi test motion axis X and ¥ are definéd as the coefficients of the W and
w? terms, respectively, in the appropriate row of Table 3.1-4, Similarly,
p is defined as the coefficient of the appropriate wW or sz term in the
cl"o'r S2 column of Table 3,1-1. (In some cases alternate expressions,
for 6”(C1) and 6#‘(82)’ are required.) Some errors are functions of the
parameters (u, \, v) themselves; for example, those due to test motion
magnitude error (6W) and torquer scale factor error (eg.). Most of the
errors are functions 6f the test motion quantit'ies (Wl and Wy for constant
rate tests, W and w for sinusoidal tests). Some errors are functions of the
direction cosines (cj and ¢g) relating the test axis to the sensor axes; for
example, those due to distortion (A), table wobble (¢y,) and torquer

nonlinearity (ex,).
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TABLE 3.2-2

ERROR ANALYSIS SUMMARY

Constant Rate Tests | Sinusoidal Averaging Sinuscldal Harmonics
T 7
Error Sovrce {Wy >> W) LS €y " bW, 8 = AW, Gy w e fywh
MM, AWy W 5, = kb?
1. Magnitude Bias . Bwe,) * Law:  tugy 3 aw
W negligibe 8W 0 =W
trs 2w o w3l ow

..] 2. Distortion - tu=0

1 a not applicable — BA=0
by =& ha‘—:,clﬂn; h*'%colwm&
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The errors due to quantization and measurement noise are
functions of test time, T. Note that the errors due to quantization decline
faster (as 1/T) for constant rate testing and sinusoidal averaging than for
sinusoidal harmonic testing (as 1/J/T). The quantization error formulas
given in Table 3.2-2 are valid only for the analog rebalanced case. The

~other formulas apply to both cases, but the Table as a whole cannot be
considered a complete error summary for the pulse rebalanced case.

The effects of measurement noise are actually taken into account
twice in Table 3.2-2, in the third and tenth rows. The third row formulas
show the combined effect of process noise and measurement noise,
assuming that the test has run long enough for a state of equilibrium to
have been reached. The tenth row formulas show the transient effect of
measurement noise alone, assuming that the equilibrium state has not yet
been reached. In performing a numerical error analysis, for a given test
time, etc., both sets of formulas should be computed and the larger result

used.

The constant rate test error formulas are influenced by the fact
that the ) and y terms must be separated by making two test runs at well-
separated test rate magnitudes (W and Ws). The direct result of each run
is a measurement of the excess torque above that which exists in the .

absence of the applied motion. Thus, we have the two equations

M, =M -M

1 AW

. LW (3.2-1)

-

M, =M -M =AW2+yW§ (3.2-2)
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which are linear in A and y. Solving Egs. (3.2-1) and (3.2-2):

Grlol .
errors:

If we take W1

5

by

V'

1 .. "
w. My - My
2 (3.2-3)
1~ Ws
1 1
W’iMl’Wz—Mz
2 (3.2-4)
1~ Ya

Considering errors in the two measurements, we can write for estimation

W W
1 2
.‘Tg GMz - —-—1— 5M1
(3.2-5)
. \.V1 - W2
1 1
—W-l— 6M1 - W_,, 61\'12 .
— = (3.2-6)
Wy - W,

as the larger of the two rates and make it considerably larger

than Wy, we can write approximate expressions for 5) and 6y:

6x

by

1

64
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1 oM, - —2 sM (3.2-7)
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In the cases where the two measurement errors are expecied to be roughly

the same size, we can make the further approximation:

- 1 )
6\ = W 6M2 (8.2-9)
2
v T L M (3.2-10)
o v ww, M nem Y

Njgte that various pairs of formulas for ) and y errors in Table 3.2-2
occur in the same ratio as Egs. (3.2-9) and (3. 2-10).

o — Table 3,2-3 summarizes a comparison of the various single-
axis test methods and meaningful combinations. The first four rows
review information already given in Table 3.1-5 and discussed in
é—e_ct;on 3.1.3. The last two rows summarize points of significant dif-
ference between testing methods shown in the error formulas given in

Table 3.2-2.

The major advantages of constant rate tesﬁng are:

e The data processing function is simply to count the
total number of pulses occurring during each test
run and, subsequently, to solve some linear
algebraic equations.

e The average applied test rate should be very

- accurately known since it is given by an integral
number of revolutions divided by the total test time,
The estimation errors due to both bias (W) and
random fluctuations (oyy) should both be negligible
as a result. This is an advantage in determining
both A and ¥ terms.
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'TABLE 3.2-3

SUMMARY COMPARISON OF SINGLE-AXIS TEST METHODS

Constant Rate
Constant Rate Sinusoldal Averaging +
Constant Rate Sinusotdal Averaging + . Sinusotdal Averaging
Stnueoidal Averaging Sinusgidal Harmonica +
Sinuscida! Harmonics
Completenesas in
Finding Sensor ) and ¥ terms ¥ terms only X and y terms all terms (y, 2,7} all terms (u, &, ¥)
-Parameters
‘Number of
Runs Required u s 30 12 a2
Redundart Data,
Crogs-checking Very Little None Some (y terma) Much (3 and y terms) Most (i and ¥ terms)
- Qpportunities
Data Processing Simple Simple Simple More Difficult More Difficult
Difficulty (Pulse Count) (Pulae Count) {Pulse Count) {Extract Harmonics) (Extract Harmonics)
Quantizaton 1 1
Elfect Decreases 1 1 1 g{r terma) 7 (A, yterme}
ST T T 5 (A, 7 terms) 1 Lt
- - 7T {us, 4, yterms) NV Daadadd erms)
;i_it:‘linatim Neé:ugl\(:ale i&)w No effecta due to ( Free to choose bost | No effects due to ?SH' Free to choose best
cTuracy and o 2 Y T Baypr Yeept M ¥) of two methods f all methods
Advastages W sH, Psu’ "su' Mesn v torma) A g Vg Mogy {2 »¥ terma)d ("L  terme)
‘ No Ay Negligible A offect
Negligible €,,, effects
i Negligible ‘W effect (A,yterms)w
e Distortion {(A) of the waveform of the applied rate is
not a problem.
e Errors due to quantization decrease with 1/T rather
than 1//T as in sinusoidal harmonic testing. This
oot is an accuracy advantage in estimating the ) terms.

The major advantages of sinusoidal testing are:

o All parameter groups can be found, including the
p terms.

¢ It is not necessary to make muitiple runs for each
test axis in order to separate the X and y terms.
This results in fewer total runs and avoids extra
errors due to run-to-run shifts in test axis mis-
alignments (egy) and parameters (Agy, YSH» MCSH)'
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¢ There is no average effect of a test axis wobble
(ew) and the effects on most harmonic terms are
small. This is an accuracy advantage in estimating
the X and v terms.

e There is more redundant information in the array
of observable quantities extracted from the test sequence
and, therefore, more chances for cross-checking results.

6f ‘cc')urse by paying the price in time and effort required to perform both
fypes of testing we can achieve the advantages of both, as well as additional

cross-che cking opportunities,

PRI (Note: the remainder of Section 3.2 explains the origin of the
error formulas presented in Table 3.2-2, Those readers not concerned
with derivation details may wish to skip directly o Section 3.3. Those

intérested primarily in quantitative results may wish to skip directly to

the numerical examples given in Section 3. 5.)

kv ome =

.. 3.2.2 Bias Test Motion Exrrors

This section summarizes the effects of bias test motion errors
on the values of gyro parameters derived from the test results. The test
motion errors considered are errors in the knowledge of amplitude and

~ frequency of the applied motions and misalignment of the test motion axes.

A complete set of sinuscidal tests involves the six cases sum-
marized in Table 3.1-1. The data from each test is processed to yield
seven Fourier coefficients. From the set of 42 coefficients, the values of
14 basic parameter groups are calculated and from the 14 groups the
values of certain individual parameters can be computed. Appendix B

presents a complete and detailed error analysis showing the effects of bias

L
L)
v

&7
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test motion errors on all 42 coefficient values. The 42 coefficients |
contam much redundant information and many of them will be of relatively
little interest except in providing verification of results obtained from a
particular subset (discussed below). In practice all 42 values could be
used as inputs to a regression analysis in order to make optimal use of all
available data. For purposes of producing a straightforward look at the
effects on the estimates of individual parameters, however, we will con-
sider only the direct effect of test motion errors on particular Fourier

_coefficients and the subsequent effects on the particular p, X, ¥ or pterm
associated with each coefficient. In many cases one of these coefficients
i'is{ &irectly proportional to one basic parameter group which in turn is

equal or apprommately equal to one individual parameter. Therefore, in

most cases a one percent error in the computed Fourier coefficient results
in a one percent error in the corresponding parameter or parameter group.
For example, for the test which employs angular vibration about the ouiput
axis, the coefficients Sy, C; and (32 lead directly to the parameter groups
k kz and k8, respectively. Errors in amplitude, 6W, and frequency,

5’
6w, lead to errors in the coefficients as follows:

681 (k5) 6W

(kzw)'aw + (kgW) 6w

I}

601

-(kgW) 8W : (3.2-11)

602
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Since we have:

it follows that:

Tlor

k =i].'.
5 W
o
kZ twW
C
= .92
k8- sz
= L
6k5—w5S1
» b
= (kg) 5 + (0) 22
) =_1_.. 5C
k2 wW 1
N
= (eg) G + () 22
- 2
6k8—-G2——6C2
_ oW, (o) 0¥
= ~2%g w T

69
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In general we can write:

6() = E () +E () +E H_' - (3.2-12)

where the parenthesized term can be any g, A, ¥ or p and the EW’ Ew

and Eg are normalized error coefficients. Inspection of the results
presented in Appendix B leads to the values tabulated in Table 3.2-4 for
these quantities. The EW values show that a 1% error in the amplitude of
the applied test vibration results in an error in the estimated parameter
group of 1, 2, or 3%. The entries in the E  column show that a given
percentile frequency error has a 1-to-1 effect on pterms and no influence
on other terms. Most entries in the :misaliglament error coefficient column,
Eg, are "negligible.” The expression in the A row of the right-hand column
is a function of C;» the direction cosine between the test axis and the gyro
input axis; E_ varies between zero when c; = 1 and unity when c, = 0. The
latter is true when the test axis is the output or spin axis. The fact that
:-Ee = 1 in these two cases represents the fact that a one Sec m1sa11gnment

of the test motion axis results in a one sec error in the derived measures

of o and Bo'

The test motion magnitude bias error formulas given in Table
3.2-2 represent the fact that EW is unity for all X terms and two for all
v terms, étc. The bias misalignment formulas represent the fact that the
only significant effect of a test axis misalignment occurs when the angular
momentum H is given an undesired component along the test axis. The

torque measurement error is, then:

sM = - J1 - cf HW © . (3.2-122)

0
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NORMALIZED ERROR COEFFICIENTS:

"TABLE 3.2-4

BIAS TEST MOTION ERRORS

( ) E w Ew E(’
| ——"
u Cl 1 1 |negligible
H 82 2 1 |negligible
A 1 o |J/1-¢3
v 2 0 [negligible
p 3 0 |negligible

This error effects only the estimation of A terms (misalignments) in

sinusoidal testing. Therefore:

oA =

1
w

-— §M =

1—(:1'a
1

H¥e

(3.2-12b)

In constant rate testing the torque measurement errors due to

a bias misalignment (€) and a run-to-run shift (A¥€) are:

5M

6M

1 .

- 1-(:.2
i

HW

1€

2 - —
-A/I—ci HW2 (e+A%)

71
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Substituting Egs. (3.2-13) and (3. 2-14) into Eqgs. (3.2-5) and (3.2-6) yields:
6x = -/1- H(e+A?) (3.2-15)

sy = -.J1- c].l2 Wlil' A7 (3.2-16)

Equations (3.2-11), (3.2-15) and (3.2-16) are the basis for the error
formulas appearing in the fourth and fifth rows of Table 3. 2-2.

------ ~3.2.3 Cyclic Test Motion Errors

This section treats the effects of imperfections in the motion
supplying devices which cause cyclically repeating test motion errors.
These effects may be studied by considering a single test motion cycle,
There is no advantage to be gained by averaging data taken over many
cycles since the resulting error torques also repeat in each cycle,

Table 3.2-5, which repeats the expressions given in Table 3.1-1, indicates
which observable quantities will be affected by various types of cyclic
~errors, )

Distortion of the nominally sinusoidal shape of the applied test

: motion will seriously affect the harmonic terms (Sg, Cy, S3 and Cg) in

" cases where there is a very large input torque, Hwi, at the fundamental

‘ test motion frequency. This occurs when the test axis has a component
‘along the gyro input.a:;cis (e;=1or 1/,/5). Exaggerated examples of dis-

. torted shapes are pictured in Fig. 3.2-1 with the corresponding errors in
Fourier coefficients [E(Sg), E(Cy), etc.]. The affected observable

s

O
,

"2
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TABLE 3.2-5

SIGNIFICANT CYCLIC ERRORS

eat B 81 c g, Cy 83 Cs
vl 3 .3
R s e e e
& (D) w | oL
e |0 ' kW ) 1
M, 3 kng W 0 -3 “3“’2 0 0
1 : 1
a 0 M+ 3 k1w2 kW Ky 0 : k,,w2 o 0
® & SRR
i 1 1 3 Ky wWk, wi 0 1 1 g 0
M. '3 kW W g 3w St
@ @ e W | @
1 1 10 1 3
ofs | 0 Me '3 ( kotky 17 (i, +k6)w 7 (“z*“a) wW Ik”wwz i ("7*"3 ) v koW
+k )W2 -r W +k )W
11 . ﬁ 14 11
U P Py ey X
& &g & | oy oo o[G0 8 @y
l 1 1 k _ 1 K+
o 71:__ M io+" (k,?+k8 . (k4+k5)w Y (kf z) 0 i \kyky ‘%Eklzws L k14ww3
f2 o e v T g | 8/
34"2_ 8./
& @ TEEREEENE
\/s L 1 1 1 (k +k ) 1 4] 1]
i 2 Vb3 2
Sz M, b WP % (k4+k6)w 7z LaW

I‘.' i

@ tgrguer nonlinearity

@.“‘0 table wobbie

@ distortion

pirie
o

quanhtles are indicated by the symbol @ in Table 3.2-5. These quan-
tities will be difficult to measure in the presence of even small distortions

of the applied motion.
should be unaffected for the following reasons.
e test table angle would drift away from

C
angular rate must remain zero or th

its zero reference position. A fundamental cosine term error, E(C1),

1}
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R-260

w;= ¢, W(sin wt+ Asin2wt) ;% ¢ W(sin wt +Acos 2wt)

1_/ E(S,):¢,HWA

E(C,)=c,HWA

w, =, W(sinwt+Asin 3wt ;=W sin wt+Acos 3wt}

EIC3)= Ci HW&

E(S,)z c,HWA

poner Figure 3.2-1 Distorted Test Motion Sinusoids

“-would be equivalent to an error in the knowledge of the test motion phase
.;angle, but the phase of the test motion should be known extremely well

“based on zero-crossings of the table reference position. An error in Sq
- is quite possible, but this is completely equivalent to a bias error in the

‘test motion amplitude, W, treated in the previous section.
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The first error formula for 8y in the second row of Table 3.2-2
is obtained by combining the E(Cg) expression in Fig. 3.2-1 with the
relation:

2_

WZ

9 (3.2-17)

The second error formula is obtained by noting that the dominant applied

torque in some tests is the output axis inertia term, cOIOOwW cos wt.

A table wobble or oscillation of the test axis about a cross axis
can significantly affect the term Sy in five of the six tests outlined in
Table 3.2-5. These are indicated by the symbol @ . It can also affect
the torque measurement during constant rate testing due to the unwanted

constant angular rate components associated with the resulting conical
motion of the test axis, These effects may be significant whenever the
cross axis about which the wobbling takes place is coincident with the gyro
input axis, or whenever the direction cosine between the two is large. The
afigular rate about the input axis includes an undesired (and unknown) com-
ponent, ﬁwi, which is proportional to this direction cosine. Since the
magnitude of the expected wobbling is of the order of some seconds of arc, .
the undesired component is extremely small comparedto the nominal test
angular rate. However, when the motion has a component in the direction
of the gyro input axis, the resulting error torque, HS @, can be significant
in comparison with other torques associated with the desired test motion,
Undesired components of W and Wes due to the wobbling motion, will also
cause unwanted torques, but these will be negligibly small since they are

small fractions of terms which are small nominally.
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" Figure 3.2-2 pictures three Euler angles (§, 8, ¢) relating a set
~of base axes (X, Y, Z) to a set of table axes (x, y, z)., Nominally x
remains coincident with X and the table motion is represented by the
angular rate, ¢, which is oscillatory in sinusoidal testing and steady in
constant raté testing. That is:

¢ = Wsin ot
sinusoidal tests (3.2-18a)
= -V cos wt
@ w
¢ =W
constant rate tests (3.2-18b)
o = Wt

Table wobble is represented by oscillatory small-angle histories for ¢
and 6.

The angular rates of the table can be expressed, in table
coordinates, in terms of the Euler angle rates by the following standard
set.of equations:

‘wy = b-isin®
i - Wy = § cos @ + Pcos 6 sin o (3.2-19)
w, = @sing+{ cos 6 cos ¢

e
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Tt e — -

oo = NOMINAL —»
TEST

R - AXIS X

P A

Figure 3.2-2

ACTUAL TEST AXIS

yr, 8 are small angles

R-822

¢ is nominal lest mation

Euler Angles Relating Base
Axes to Table Axes

(See, for example, Ref. 6, p.475,.) Since the gyro is rigidly attached to

the table, these equations also represent the gyro case angular rates in

some case-fixed coordinate frame.

Based on small angle assumptions

(cos 8 T cos y ¥ 1, etc.) and the elimination of higher order terms we can

write the following expressions.

For low frequency sinusoidal testing:

o~

fod

W sin ot

6

b

T

(3.2-19a)
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For constant rate testing:

w, = W

n

6 cos Wt +psinWt ) (3.2-19b)

= - @ sin Wt + ) cos Wt

£
1

In sinusoidal testing the expected form of table wobbling is a
second harmonic osciliation of the test axis due to an offset center of mass
of the table and equipment mounted on it. An offset in the y direction (dy),

for example, causes a double frequency acceleration (dyW sin” wt), which

scauses a bearing torque and angular displacement about the z axis. The
magnitude of the displacement depends upon the table unbalance and
'-,geometry and the bearing stiffness, but its time history shouid closely
follow the forcing acceleration for low frequenéy test motions. Therefore:

oty = ¥y sin2 wt
ﬂbl '
=5 (1 - cos 2ut) (3.2-20a)
= "bavg - €, Cos 2wt

where ¢, is the amplitude of the wobble. Differentiating, we obtain:

¥

n

IJ.) 2w E%b sin 2t
(3.2~21a)

IR

8 2w % sin 24t

%
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" {The 6 equation corresponds tb a z axis center of mass offset.) Consideration
of Egs. (3.2-21a) and (3.2-19a) shows that there will be a second harmonic
oscillation about some axis in the y -z plane. .The resulting error torque
depends on the extent to which the gyro input axis coincides with this axis.
Assuming a worst-case situation (the wobble axis coincides with the gyro
input axis when c; = 0, or with the projection of the gyro input axis onto

the y-z plane when ¢, = 1/ J_Z—) the appropriate error formula is:
- 2 R _
E(S9) = 2w €w J1 c; HW (3.2-22a)

where < is the direction cosine between the gyro input axis and the test
axis and W represents the combined effect of 0 and ¢ v The other Fourier
coefficients, B, Sy, Cq and Cy, are unaffected. Therefore, the y, X and
v terms are all unaffected, except for the pterm, %kIS’ which is associated
with S, in the "o/s" test. In this case:

1

—5 E{(S3)
sz

2 [, 2
= WH l-ci €W (3.2-23)

g

In constant rate testing the expected form of wobble is a conical

motion of the test axis, again caused by the net mass unbalance about the
axis of rotation. In this case the Euler angles, pand & oscillate at the
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test motion frequency, W, with 8 leading by 7/ 2 radians when the
direction of table rotation, ¢, is as shown in Fig. 3.2-2, Therefore:

1

] €4 sin Wt + €y COS wt
(3- 2-20b)

@ -
i

€4 €OS wt - €y sip wt
“Differentiation of Eq. (3.2-20b) and substitution inte Eq. (3.2-19b) leads
“to expressions for wy and w, which contain constant and double frequency

terms, The latter cancel, leaving:

[ U

mn

e LR |
Iiael .. . (3. 2‘21b)

:.—_.f’ [ ‘l‘i > W el

The result is an undesired constant rate about some axis in the y -z plane,

-leading to the worst-case error torque formula:

Tio b M = -WHJ1-¢ ey (3.2-22b)

*-Combination of Eq. (3.2-22b) with Egs. (3.2-7) and (3.2-8) yields the
error formulas for 6\ and &y given in Table 3.2-2,
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3.2.4 Errors Due to Quantization

When pulse rebalanced sensors are tested, the test data is a
sequence of integers which represent the integral of torque over particular
time intervals. The same is true in testing analog rebalanced sensors in .
cases where the torque command signal is integrated and quantized to
provide an output pulse sequence. In constant rate testing and sinusoidal
average testing the data is simply the total pulse count which, when divided
by total test time, represents the average torque level over the duration
of the test. In sinusoidal harmonic testing the test time, T, is usually
divided into a sequence of equally spaced intervals of length, h. In the
limiting case for pulse rebalanced sensors h is a single pulse width,
making the test data a sequence of binary or ternary numbers representing
the time history of the rebalance torque. However, h can also be chosen

as any integral number of pulse widths.

Consider first the case of an analog rebalanced gyro where the
outputs appear at varying intervals, not generally occurring exactly at the
beginning and end of the counting intervals, The example time-line of
Fig. 3.2-3 shows a case where p pulses are counted within the interval
(tj, ti+h). The error due to quantization depends on the quantities, x; and

X;+1+ The error in measuring the integrated torque over the interval is:

X, X

e ¥ q Tel - ;ﬂ (3.2-24)
i i+1

where q is the weight of a single pulse or count (measured in dyne cm sec).
If we assume x; and X1 to be independent random variables uniformly dis-
tributed over the spacing intervals, 'a'i and £i+1’ in which they occur, then

the joint distribution of the normalized quantities, Xi/‘a’i and xi/ % 1> Will be

as shown at the left side of Fig. 3.2-4; the resulting density function, p(e),

<t

.81
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R-800
L] Xis} o
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Figure 3.2-3 Pulse Sequence
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ey

Figure 3.2-4 Distribution of Error Pue to Quantization

I Reproduced from
| best available copy.
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for the error is illustrated at the right. It has zero mean and

variance:

G
[T
I
o
=
@
b
o]
—
3
o
@
Il
Do
Q b

1 2 ' 5
= _6 q ‘ (3.2-20)

Therefore:

o =L (3.2-26)

The resulting error in measuring the average torque during a constant

rate or sinusoidal test is:

o
=_¢
M T

(3.2-27)

-
JeT

' In sinusoidal harmonic testing, the objective is to estimate the

:(Jiﬁéjférvable quantities, Sl’ Cl’ 82 and C2, after removing the average
valué, B, from the time varying torque. Thus:

M(t) - B = 8, sin ut + C1 cos wt + 82 sin 2ot + C2 cos 2ut  (3.2-28)

1
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Each integer measurement is given by:

‘ hi
.f [M(t) - B] at
hG-1)

(]
i

54

C
D - [_ cos whi+cos wh(i-l)] + Fl [sin whi-sin wh(i-l)]

S C

2 . 72 | . .
+§B [— cos thi +cos 2wh(1—1)] + L7 [sm 2¢.uhi - 8in 2¢h(i 1)]
(3.2-29)
Defining a state vector of quantities to be estimated as:
S
¢
X = (3.2-30)
C
| “2 |

and a j-dimensional vector, z, of measurements, taken over an interval

T = hj, we can form the least-squares estimate, ;c, as follows:

- -1 .
% = (HTH) HT 2 ©(3.2-31)
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where H is the j x 4 measurement matrix:

fy 8 Py Y
H = .1 .
@
f .
] g] p] q]
Wli’e‘re:
f. = - cos whi + cos wh(i~1)

1

etc. (see Eq. (3.2-29)). Therefore:

- -.3' 2
Efi Efigi- Efipi
1

rvegf = 2 reg.p
T, 1 &' ~& 8;P;

H™H = -3
2

&)

zpif; Tpig Ty

Eqifi Eqigi za.p

85..
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(3.2-34)
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Summing over a full cycle of N points (N = 27/wh), we find:

HT

H

N/2 ©
1 o N/2
wz 0 0

i 0 0

Similarly, over an integral number (M) of cycles of N points each:

o MN/2 0
kHTH= -1—2 0 MN/2

W 0 0
joed
0 0
_. .Therefore :

-1
: MTH) =

L TP, -

0 0
0 0
MN/2 0
0 MN/2
2h/T
wz 0
0
0

0
2h/T
0
0

=1
T2
w

L

0
0

2h/T
0

T/2h O

0 T/2h
0 0
0 0

0‘7

i
0
2h/T

ad

0

0
T/2h

0

-
0

0
0
T/2n

(3.2-35)

(3.2-36)

. For a sequence of independent measurement errors of variance qz/ 6
[Eq. (3.2-26)], the estimation error covariance can be shown to be:

2

G-0GE-0" = L @Tm™
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Therefore:

- =0y = o .49 , /% (3.2-38)

The error formulas in the seventh row of Table 3.2~2 are based on
Egs. (3.2-27), (3.2-38), (3.2-9) and (3.2-10).

- For pulse rebalanced sensors the type of quantization error

.....

errors perhaps larger, associated with the dynamics of the nonlinear

feedback loop, which can cause wide float angle excursions, limit-cycling

good replica of the applied torque hisiory, especially over short measure-

ment 1ntervals. Parts of the above analysis will apply to this case, but

oSuls

1t 1s a basically more complicated problem which will be treated in future

wmk.

o -
Lo

Teql.

Ty

¥7773.2,5 Random High Frequency Errors

, In Appendix C the first stage (see Fig. 3.1-3, stage Ia) of the
él;ir:é'.'processing problem is formulated as a problem- in linear estimation,
fo'r'vsihich the Kalman filter is an optimal solution. The "state variables"
to be estimated for each single-axis test are the seven Fourier coefficients,
That is, the data processing function is to determine sets of Fourier
coefflclents but not by Fourier analysis, This formulation is particularly

useful in illuminating the effects of random high frequency measurement

noise and process noise on the errors in estimating the state variables and

on the test durations required to ach1eve gwen levels of accuracy.
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_ The development of the first half of Appendix C is somewhat
”similar to the development of quantization effects for sinusoidal harmonic
' teStiﬁg in the preceeding section, except that a continuous, rather than

discrete, linear estimation formulation is employed. In both cases the

estimation errors due to measurement noise decrease as 1//T.

Measurement errors are differences between recorded or
processed measurements (gyro outputs, table angles, etc.) and the actual
"quantities they are supposed to represent. In the case at hand the primary
- measured quantity is tbrque produced by the torque generator in the

rebalance loop of a gyro. Measurement noise refers to random changes or

fluctuations in the error in this torque measurement, such that {wo values
of the error a short interval, 7, apart are uncorrelated (or tending so as
T increases). The definition does not include a bias measurement error,
nor any cyclicly repeating error such as that due to torquer nonlinearity.

Process noise relates to random changes in the state variables (Fourier

vcoefficients) themseives. These can occuf because the gyro parameters or
the test motion quantities appearing in the state variable definitions are not
staticnary. In cases where table angle measurements are produced by the
test, the errors in these quantities can also be treated as a source of

process noise (see Appendix C).

The development of Appendix C leads to some approximate
formulas which are useful in predicting achievable estimation error variances.
The key parameters are the scalar r and the matrix Q which characterize the
measurement noise and process noise, respectively. The random part of the
‘measurement error v(t) is assumed to be Gaussian white noise with zero

‘mean and covariance r&(t-r) where 5 is the Dirac delta function:

viE) = 0; v({t) vir) = ré(t-1) (3.2-39)
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Theé process noise is a seven-dimensional vector quantity u(t) representing
the rates of change of the seven Fourier coefficients. It is also assumed to
be Gaussian white noise with:

—— \

ut) = 0; ut) u(r)T = Qst-7 (3.2-40)

C(hiqt_)sing realistic values for these quantities requires the kind of know-
ledge expressed in the autocorrelation functions of the random processes

involved. Some useful formulas (See page 147 of Ref. 7 or Ref. 8.) are:

_ 2

r = 2GvTv : (3.2-41)
_ 2
=20 T (3.2-42)

- . %3 u, u

where:
' 2 X .
LTI Uv = the measurement noise variance
2 . . . .
oy = the process noise variance of the ith gtate variable
i
Ty © the correlation time of the measurement noise
Ty = the correlation time of the process noise

The values of the off-diagonal elements of the Q matrix depend on the cor- .
relation between changes in the Fourier coefficients, If test motion
variations are the major cause of process noise, the several components
of the noise vector will be highly correlated. That is, the off-diagonal

o

éu
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elements of the @ matrix will be non-zero and significant, If, on the other
hand, gyro parameter changes are the major cause of process noise, we
would expect very little correlation between the components of u. (These

comments are discussed in some detail in Appendix C.)

Some time after the start of a test the estimation error variance,

2
Oy
condition, in which the information coming in by virtue of new measure-

ments is balanced by the information being lost due to process noise. A

of the ith state variable (Fourier coefficient) reaches an equilibrium

conservative formula for the final (equilibrium) value is:
a? = Jf2r 4 (3.2-43)

The error formulas given in the third row of Table 3.2-2 are based on
Eq. (3.2-43) and the assumption that process noise is caused by random
fluctuations in the test rate magnitude. Equation (3.2-43) is plotted

. parametrically in Fig. 3.2-5, along with a companion formula for useful
test duration discussed in Section 3.3. A more accurate formula, including

the effect of correlated process noise components, is:

0'12 = Ar a4 (1 - c?j) | (3.2-44)

where i #j. The coefficient cij is a measure of correlation between the

.th .th .
i andj components of process noise:

ey = _q—ll—: (3. 2-45)
v %hi %
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and the jth component corresponds to the largest or dominant compbrient of
‘process noise appearing in the test. High correlations between certain
process noise components, therefore, helps to reduce certain estimation
errors.

=

L Equation (3.2-44) can be combined with Egs. (3.2-41) and
{(3.2-42) to yield an expression which is more complicated but which only

‘contains terms which have a physical interpretation. Thus:

0'.2 /2 ToT (1 - cz) (3.2-46)

1]

LSRR

The Kalman filter formulation developed in Appendix C is
potentially significant in two ways. First, it provides the above equations,
along with related equations presented in Section 3.3, which are useful in
,p_i'gedicting the achievable test accuracy and required test duration.
ééi:dnd it provides a set of optimal data processing equations which could
be used for reducing actual test data. A connection between this procedure
and Fourier analysis is also developed in Appendlx C. The data processmg

alternatlves are discussed further in Section 3. 4.

Tno o

ol o

3.2.6 Rebalance Loop Errors

A torquer scale factor error is an error in our knowledge of the

linear gain of the rebalance loop. It is usually given as a dimensionless
ratio (ESC = so many parts per million), The error formulas in the eighth
row of Table 3.2-2 simply express the fact that the resulting errors in all

parameter estimates will be equal to their actual values times this ratio.
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Torquer nonlinearity causes significant estimation errors for
both constant rate and sinusoidal testing in the three cases which involve
a large gyroscopic torque, Hwi(when c; = lor1/ ﬁ). Noticeable errcrs
may also occur in sinusoidal testing in the three cases which experience

a sizeable output axis inertia torque, Ioowo(when Cy " 1or 1/ ﬁ).
Observable quantities which may experience significant errors due to

these effects are indicated by the symbol @ in Table 3.2-5.

Figure 3.2-6 shows two types of nonlinear elements acting on
input functions, x(t), and producing output functions, y(t). We consider a
nonlinear function, y(x), which combines the two types shown into one

equation as follows:

y = Xte kx| - € x| x - €q x5 (3.2-47)

The first term in Eq. (3.2-47) represents the desired, linear character of
the torquer loop. The next term (¢4 |x|) represents a torquer asymmetry
which is an example of an "even-valued'' nonlinearity. This type of torquer
characteristic is most likely to be significant in the pulse rebalanced case.
The last two terms (-ezlxlx and - €q x3) represents an "odd-valued' non-
linearity. This type is most likely to characterize an analog rebalance

torque loop.

For sinusoidal testing the input function is:

x(t) = A sin wt (3.2-48)
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asymmelry

(even nonlinearity)

y s x+€|xf

R-1231

odd nonlineorities

y= x- €, |xfx -€yx3

Figure 3.2-6

Torquer Nonlinearities
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and the output function, which must also be periodic, can be represented

by the trigonometric series:

y(t) =b, +ay sin wt + by cos wt +a, sin 2wt + by cos 2t + ...

(3.2-49)

Substitution of Eq. (3.2-48) into Eq. (3.2-47) and Fourier analysis of the
resulting expression for y(t) yields the Fourier coefficients given in
Table 3.2-6. Thus, the output is equal to the input plus a deviation
function, d(t): '

P

y{t) = A sin wt +d{t) (3.2-49a)
wheré
| dit) = A ﬁ_(ﬁé +§A25 )sin t—iilcosZt
m 37 92 1Y 3 w37 w
8 A 1,2 . 4 €1
1' +(1—5 2 4A c)sm 3wt - —1—5——cos et + ...
(3.2-49b)

Figure 3.2-7 shows é linear gyro loop in which the deviation
function, d(t) has been added in order to account for the effect of a slightly
nonlinear characteristic in the feedback path. The transfer function
relating the input Ma(t) to the output, er(t) is:

'é'r(s) i Kl (1-25 + 1)_
fye) s (rys 1) (rps 1) + ¥

(3.2-50)
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TABLE 3.2-6

NONLINEARITY EFFECTS ON SINUSOID

X = A sin ot

3
= X+ €1|X| - ez|x| X - €g%

~
-

n

b0 +a}l sin wt +b1 cos ot

+a, sin 2wt + by cos 2ut

+ .40
Nominal €4 Effect €q Effect €q Effect
bo = 0 %—é 5 —_— S
ay = A -— '%ATzfz "gAsfs
bl = 0 — S —_—

,} 2y = 0 —_ — —
by = 0 -3 '1?‘ € - T
ay - 0 B O VN e YN

T by = 0 — — —_
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N

R-247
M (t) M, K, e, (1)
- > =
h s{Ts+l)
< ! -«
+ T,s+l
T+
d(t)
Figure 3.2-7 Linear Sensor Loop with
Disturbance Function
Added
for low frequencies this becomes:
°r
— =+ (3.2-51)
Ma
and, similarly:
r
ru -1 , (3 2-52)
Therefore:
er(t) = Ma(t) - d(t) (3.2-53)

which simply states that the net torque M, is kept close to zero by the action

of the loop.

-
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For a sinusoida} test motion, W sin «t, the first approximation

to the output (neglecting the effect of the deviation function) is

er(t) = Ma(t) = chi sin wt + Ioo wW ¢, cos wt (3.2-55)

and the deviation function is

_ 2¢ HWe, €
_ 1 (85Y% 3.2 22 \ 4
d(t)-—HWci — —(§ - ez+-4~H W cies) sin t - 3 coszwt+,.,]

1 w W coe3 cos wt

2¢; (8%0%%C 3.2 222
3 7 24 oo

cos 2ut + ... | (3.2-56)

=:|,..’“

21 wW
= _ o HW _90
e (t) =Gt %4
5 -
] ‘ 3 (HWci) 3 3
+ ’HWCi + ‘:'3“'—*—}’—“‘ €2 + Z (chl) 63 sin wit
| (I W ) ' 3 -‘
8 \'oo®" "o 3 _
+ 3 - €2 + 3 (Ioocho) e3 cos wt
[ Hwe, I wWe
4 4 “oo
Hlg—F— ¢ -3 — 5 €1 °°s 2wt
+ ... B (3.2-57)
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Si'h‘c_é’the nominal output is HWci sin wt, the expressions in the brackets
in Eq. (3.2~57) represent the errors in the Fourier coefficient estimates,

E(B), E(S1), E(Cl) and E(Cs), due to torquer nonlinearity.

The error formulas given in the ninth row of Table 3.2-2, for
sinusoidal testing, are obtained by substituting the above expressions

into the following relations:

< - _.L
) bp = oW E(Cq)
sinusoidal
L = ~1-E(Sl) harmonic
w testing
. (3.2-58)
2
-5 E(Cz)
W
by = 5
DBETLY = E(B) sinusoidal
.- wz averaging

These formulas can also be used to cortect the results of a vibration test
if the torquer nonlinearity is calibrated in advance by means of a series of
constant angular rate tests. In that case the final {est errors are

proportional to the error in the knowledge of the nonlinearity, rather than

the nonlinearity itself,

L
[ PR

The error formulas for constant rate testing are obtained

by observing that we are operating at two points on the same side

of the nonlinear gain curve. Since Wy is assumed to be much
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smaller than Wl’ we take the significant torque measurement error
to be:

_ 2 .3
6M1 = €2M1 - c3 M1
 g\2 2\3
= - (AWI +‘yW1) - g (J\Wl +7W1) (3.2-59)

Substitution of Eq. (3.2-59) into Egs. (3.2-7) and (3.2-8) yields the
formulas given in the ninth row of Table 3.2-2 for constant rate testing.

3.2.7 Errors Due to Parameter Changes

Error formulas showing the effect of run-to-run shifts in
parameter values during constant rate testing are obtained by letting X
and y take on different values during the runs (W and W) and using
Egs. (3.2-3) and (3.2-4) to form estimates, »and y. Thus:

12 = kl + ASH : (3.2-60)
5 . ,.
Yo = % * Ysy : (3.2-61)
and
_ - 2 :
(Ma - Mc)l = M1 AI W1 + -;vlw—_1 (3.2-62)
- _ 2
(Ma - .Mc) , = M2 = J\z W2 + 72W2 (3.2-63)
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Therefore:
w - W
2} "1 2\ Y2
] ("ZW2 tRW ) W, ("1“’1 * 71“’1) W,
A o= |
- Wy - W,
7
= Ayt VV1 Aaret ‘VI‘Rz
17 \W, -w, /*sH” | W, - W, /"sH
17 "2 1
and
1 2\ 1
) ("1“’1 * ”1“’?) 7 ("2“’2 * "’zwz) W,
y = . -
W, - W,
-, 1 \ Wy
ST ~ - . y
1 \Wy-Wy )%sH \Wy - W,y /7sH
Wlthwl >> W,, we can write the approximate formulas:
8x = A=Ay T Agy * Wy gy
b = 7v-7 "W, sH W, "sH

101

(3.2-64)

(3.2-65)

(3.2-66)

{3.2-67)



THE ANALYTIC SCIENCES CORPORATION

A shift, Mcgyy, in the constant (zero input rate) torque between
runs has the same effect as a measurement error, GMZ. Thus we can use
_Egs. (3.2-9) and (3.2-10) to obtain: ' '

. _ 1 _
o 6). - ‘_V; MCSH (3.2 68)

:E;SZ -1
Fan -t 67 W1W2 MCSH

)

(3.2-69)

“The error formulas in the last row of Table 3.2-2 are obtained by com-
bining Eqs. (3.2-66) and (3.2-67) with Egs. (3.2-68) and (3.2-69),

respectively.

3.3 TEST DURATION

The determinaﬁon of an app'ropriate test time, T, is governed
by the estimation error components which vary with T. These are
primarily the error due to quantization and the error due to measurement
noise (see the seventh and tenth rows of Table 3,2-2). We recall that
errors due to quantization decrease as 1/T for constant rate testing and
sinusoidal averaging, and as 1/ ﬁ for sinusoidal harmonic testing; errors
h;lué “to measurement noise decrease, initially, as 1//T in all three cases. |
For sinusoidal harmonic testing the quantization effect can be considered
as a component of measurement noise., The measurement noise effect
does not continue to decrease as 1/ ﬁ without limit, but reaches a state
of equilibrium where measurement noise and process noise are in balance
(see the third row of Table 3.2-2).
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In general all errors can be grouped into three classes, as
illustrated in Fig. 3.3-1 where o is the one-sigma estimation error cor-
responding to the observable quantity in question. The constant term,
kb’ represents the sum of all stationary components, such as the effects
of bias errors, cyclic errors and run-to-run shifts. The curve labeled
kr/ﬁ represents the combined effect of measurement noise and process
noise. The curve labeled kq/ T represents the effect of quantization during
constant rate testing and sinusoidal averaging; this curve is not present
for sinusoidal harmonic testing. A reasonable rule for selecting T is to

choose a large enough value so that either:

1) Both kinds of time-dependent esimation errors are

less than the staticonary errors.

2) The equilibrium level has been reached for estimation
errors due to measurement-noise/process-noise
and that level exceeds the remaining time-dependent

term (kq/ T) as well as the stationary term (kp).

If more than one observable quantity is to be estimated, as in
sinusoidal harmonic testing, the above rule should be applied to each of

them in turn, and the largest resulting value for T used as the test time.
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Figure 3.3-1 Time-Dependent Test Errors

3.3.1 Choice of Sample Interval

The effect of the size of the sample interval, h, or number of
‘samples per cycle, N = 2¢/wh, for sinusbidal harmonic testing is sug-
_' gested by the form of the quantization error formulas derived in Section
,3'.'2..4. The standard deviation of the estimate of each observable quantity

1s given by:

w Zh (3.3-1)
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er

' I_:quérlthat q/. ﬁ is the rms error in each sample count and T/h is the

total number of data samples taken. Thus, the estimation error is
directly proportional to the single sample error and inversely propor-
tional to the square root of the number of samples.' For a given test time,
T, the error is proportional to the square root of h, indicating that h
should be selected as small as possible in order to minimize errors due
to quantization. On the other hand, in order to ease the data processing
ﬁas.k, h should be selected as large as possible. However, it should not
bé- S-elected so large that it is impossible to extract the harmonics of the
signal. For example, if h = T, the total test time, the procedure is
reduced to sinusoidal averaging. In conclusion, the number of samples
per cycle should be at least enough to define the first two or three
harmonics. A larger number (smaller h) than that will decrease the
parameter estimation errors due to quantization but increase the data
processing requirements. In the numerical examples given in Section 3.0
the values, N = 10 samples per cycle and T = 100 sec., are used. In
those examples the error due to quantization is the largest contributor in
aily two cases (the estimation of the y terms when the test motion axis is
i*and;i/s).

error

ave::3.3.2 Effects of Quantization: Examples

This section presents some illustrative numerical examples
relating the data resolution or quantization level to total test time and
parameter estimation errors, For a given gyro wheel momentum, H,
the quantization level, g(dyne cm sec), can be converted to an equivalent
gyro output quantization level, A6(Sed). Similarly, the errors in

estimating average torque, oM (dyne c¢m), can be converted to an
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equivalent gyro drift rate, aD(deg/hr) The results are presented both
ways assuming an angular momentum: H = 10 gm cm / sec. The

assumed test motions are, for constant rate tests:

Wy

0.26 rad/sec (15 deg/sec)

o me—

i

W, 0.017 rad/sec (1 deg/sec)

2

énd, for sinusoidal tests:

0.26 rad/sec (15 deg/sec)

3
]

27 rad/sec (1 Hz)

(X
"

First consider the quantization level:
q = 4.85 dyne cm sec

’I‘ihiLs— is equivalent to a 10 Sec¢ rotation about the gyro input axis. Table
3.3=1 presents the resulis of computations based on the quantization

error formulas (see Table 3.2-2) for several values of test time. For
constant rate and sinusoidal average testing the one-sigma error in the

average torque measurement is:

dyne c¢m (3.3-2)

=1

oM

_El___
J_.
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TABLE 3.3-1

EXAMPLE ERRORS DUE TO QUANTIZATION

q = 4.85 dyne cm
A8 = ¢/H = 10 Sec per pulse

Constant Rate Sinusoiflal
T UM o Averaging
D o o o
(sec) (dyne cm) (deg/hr) A Y Y
{dy ecmsec) | (dy cm sec?) {(dy cm sec?)
10 0.198 0.41 11.6 . 44,7 5.86
1 100 0.0198 0.041 1.16 4.41 0.586
|...1000 0.00198 0.0041 0.116 - 0.447 0.0586

Sinusoidal Harmonic Testing

T Onm op o, oy o,
(sec) {dyne cm) (deg/hr) |{dycm sec2) | (dy emsee) |[(dy cm sec?)
| O 11 1.76 3.60 1.08 6.77 52. 1
- _. 100 0.556 1.14 0.70 2,70 - 16.45
1000 0.176 0.36 0.108 0.677 5.21
| 10000 0.0556 0.114 0.07 0.21 1.65
The equivalent gyro drift rate is:
034(57- 3)(3600) ,
op = i deg/hr. (3.3-3)
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The corresponding parameter estimation errors are:

_ 1
oy W; oM (3.3-4)
' constant rate tests
o= o - (3.3-5)
Y W1W2 M
- Iico _ 2 . . .
o, = ;V—z— oM sinusoidal averaging tests (3.3-6)

For sinusoidal harmonic testing the rms errors in the Fourier coefficient

estimates are:
- L, /2 (3.3-7)
The values given in the lower part of Table 3. 3-1 are based on the

assumptlon that 10 samples per second are taken; that is, the sample )

mterval h is 0.1 sec. The equivalent diift rate is again given by

i

Eq. (3.3-3). The corresponding parameter estimation errors are:

[edeom £ty

L B
% T W M : (3.3-8)
1
P . " (3. 3-10)
¥ WZ M
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Figure 3.3-2(a) plots o, versus test time for four values of

qﬁéntization level, A8. The two rlrziddle values (1 Sec and 10 s’a:) are
representative single-pulse quantization levels for pulse rebalanced
sensors. The extreme values (80 Sec and 0. 04 sfé‘?:) are representative of
an analog rebalanced case in which a voltage-to-frequency device with a
full scale output rate of 5000 counts/sec is ﬁsed. The high quantization
level would be necessary for an applied rate about the gyro input axis of

2 rad/sec, which causes a torque of:

M = w H = 2x10° dyne em

R-F232

oy (deg/hr}

o0t

Q.00

- 3 AG=0D4ie
0.0001 L ! L =
. 10 100 1000 Q000 10 100 1000 10000
Test Time,T{sec) Test Time,T{sec)
(a) Constant Rate and Sinusoidal . . . .
Average Testing (b) Sinusoidal Harmonic Testing

Figure 3.3-2 Effective Drift Rate Due to Quantization
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Therefore, the device must be scaled to make:

5 , .
_2x10 -
qmax_ = =500 40 dyne cm sec
cand .
4 5 06x 10° ~ 80 Se¢

o A0ax T H

;'-I_‘;hé:mw quantization level would be possible for a test involving small
i:oréﬁes only, such as an applied rate about the gyro spin axis. If the
maximum torque expected in this case is 100 dyne cm (see example values

ejn Section 3.5), then the device can be scaled to make Aemin T 0.04 fec.

- This points up a possible advantage in analog rebalanced testing, as

= opposed to pulse rebalanced {esting. It may be easier, in the analog case,

ito re-scale the data processing electronic equipment to take good advantage

~of situations involving only low levels of applied output axis torque., By

2such a re-scaling the quantization effect may be reduced, with an

: attendant possibility of increased torquer nonlinearity effect and signal

r:generator noise effect.

NAraae . .

For sinusoidal harmonic testing the error in the measurement

3t

EA A

- :o_f drift rate is proportional to the test motion frequency (w) and to the
— square root of the sample interval {h). This dependence is shown in
_ Fig. 3.3-2(b) where results are plotted for two values of the parameter,

. w.,fl?,r for each of the four quantization levels. -
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3.3.3 Time to Reach Equilibrium

This section treats the question of how long it takes for
e_stimafion errors to reach a state of equilibrium, defined largely by the
relative magnitudes of measurement noise and process noise; by filtering
data taken over many cycles it is possible to reduce the effects of
uncorrelated random errors. The formulation of the first stage of the

data processing problem as one of linear estimation (see Appendix C) is

‘useful in indicating the length of time over which it makes sense to filter

the dafa; the state variables to be estimated in each single—'axis vibration

test are the seven Fourier coefficients.

Figure 3. 3-3 is a conceptual plot showing how the estimation
error variance or2i of the ith state variable might change during the czourse
of a test, assuming the use of optimal fillering. The initial value o, (0) is
a measure of the uncertainty regarding the variable prior to the start of
the test. The final value crzi(m) represents an equilibrium condition that is
reached after sufficient time, in which the information coming in by virtue
of new measurements is balanced by the information being lost due to
process noise; the final value is independent of the initial value.* The
?I'ia-jpr reduction in 012 takes place while the curve tends to follow the
dashed line labeled "measurement noise only.' This dashed line cor-
;ééﬁonds to a hypothetical, optimal filtering situation in which there is no
iifocess noise and the initial uncertainty is infinite. The dashed curve,
fherefore, depends on only one parameter, r, which characterizes the
measurement noise. It approaches zero asymptotically; by processing
iioisy measurements of,.g deterministic quantity the estimation error is

made steadily smaller as time progresses.

*
This is only true if certain observability conditions are satisfied.
In the problem considered here these conditions are met.

L2
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02 (0) \\
! . Y Measurement Moise Only .
a? (t}=F{r)

Complete Problem :
P:@-LenThp

o)z f{r,Q)

Figure 3. 3-3 Eétimation Error Variance Time History

[

A "solution time" or "settling time" tS can be loosely defined

‘as the time it takes the estimation error variance to get “"close” to its

“final value. The significance of t_ is that a test should be allowed to con-

"finue this long in order to get full benefit of the optimal filtering. A use-

i:flil"measure of t s can be taken as the time at which the dashed line crosses

the final value level (see Fig, 3.3-3). This crossing point depends on

measurement noise and process noise, but is independent of initial errors.

It can be found for any assumed set of measurement noise and process

noise statistics by methods developed in Appendix C.
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An approximate formula for the settling time is (see Appendix C):

(3.3-11)

‘where r and %5 characterize measurement noise and process noise,
L';"é_Sp'ectivel],r, as described in Section 3.2.4. Equation (3.3-11) is a com-
f}hnibh to Eq. (3.2-43) which gives the final value of the estimation error.

Both are plotted parametrically in Fig. 3.2-2.

An alternate expression for the settling time, one which con-

siders the effect of correlated process noise components, is:

t = (3.3-12)

:where Cys is a measure of correlation between two components of process
noise the j° component being the one which dominates the problem.
Equatlon (3.3-12) is a companion to Eq. (3.2-44)., Together they imply
that a high correlation between process noise components sometimes
reduces the final estimation error variance, at the same time increasing

__the time needed to reach the more accurate level.
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3.4 TEST DATA PROCESSING

_ The data processing function, for sinusoidal harmonic testing,
can be defined in terms of the procedure pictured in Fig. 3.1-3 which
shows three data processing phases: Phase Ia accepts as input the scalar,
periodically time-varying sensor output and generates the set of Fourier
coefficients for each single-axis test; in phase Ib the complete array of
estimated values of the Fourier coefficients for a sequence of six single-
axis tests is processed to yield estimates of a complete set of basic
parameter groups; in phase II the values of individual parameters are

computed.

Phase Ia, in which raw test data is processed, directly influences
the choice of laboratory data processing equipment (see Section 4.2). Three
candidate types of processing algorithms, Fourier analysis, least squares
estimation and Kalman filtering, are considered below. Phase Ib involves
the éétimation of the basic parameter groups from an array of redundant
cééfficients. As a practical matter this phase may become a very simple
cbiﬁ;ﬁutation based on a subset of "primary" coefficients, as discussed in
Section 3.2.2, leaving the redundant information to be used as a cross-check
on the operation of the test sequence or as a means to indicate the existence
of previously unsuspected error torques. Alternatively, some form of
regression analysis may be used to develop an optimum f{it to the entire
array of redundant data. The possible gain from such a procedure has not
been investigated. Phase II, the simple algebraic calculation discussed in

~ Section 2.4, requires no further study. This section will consider in detail
" the form of the equations to be mechanized in order to perform phase Ia via

the three candidate algorithms,
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3.4.1 Fourier Analysis

One obvious way to determine the coefficients ofa trigonometric
series is by Fourier analysis, ¥or two reasons the problem at hand may

differ from a classical Fourier analysis problem. These are: -

¢ Because of errors in measurements and test motions
we would like to process many cycles of data rather
than just one.

¢ It may be necessary to deal with quantized rather than
continuous data. This will certainly be true for a _
pulse-rebalanced sensor since the data comes naturally
in quantized form. It may also be true if data from an
analog-rebalanced sensor is to be processed on a digital

computer,

The following equations are appropriate for computing Fourier
coefficients from a continuous cutput function er(t), taken over a time
interval corresponding to m test motion cycles, where the test motion

?f-jéhﬁency is w and the cycle period is T = 21/ w:

The rebalance torque is assumed to be the continuous function:

e Mtg(t) = th e () ,. (3.4-1)

o

The applied torque is given by:

Ma = Mtg = B+8, sin wt + C; cos wt

+ S2 sin 2wt + C2 cos 2ut

+ S3 sin 3wt + C3 cos 3wt (3.4-2)
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The Fourier coefficient estimates are:

mT
B = 'ﬁ_—lT e_r(t) dt . . (3. - )
0
2th‘ mT
Sn = T er(t) sin net dt (3.4—4)
o ‘
2th mT
c = —£ S e (t) cos nut dt (3.4-5)
0

wheren =1, 2 and 3.

"E'qi.l.-?itions (3.4-3), (3.4-4) and (3.4-5) reduce to the classical Fourier
analysis equations when m is unity. These equations can be mechanized
directly on an analog computer for a sensor which is analog-rebalanced, in

which case er(t) is produced as an analog signal,

For the pulse rebalanced case, two sets of exact equations which

Eén’é te the Fourier coefficients corresponding to the square-wave-type

[

torque generator output are developed in Appendix D. For the binary and
ternary pulse schemes the equations for the sine and cosine coefficients

are:
: km-1
= 1 C L . .
Sy ° Tanm Z: M, [(1-cos nwh) cos nwhi + sin nwh sin nehi] (3.4-6)
i=0 _
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km-1 -
L. -1 . . . .
- - - a4_.
Cn Y E M, [(1-cos nwh) sin nwhi - sin nwh cos nwhi]  (3.4-7)
i=0

where:

n =1, 2and 3

h = pulse width

w = test motion frequency

m = number of cycles processed

k = number of pulse widths per cycle (2r/wh)
and Mi defines the torque level of the ith pulse according to:

M positive torque level
e Mi = (0 zero torque level
e M negative torque level

The bias Fourier coefficient is proportional to the net pulse count. That is:

km-1
1
B = — Z M, | (3.4-8)
i=0 : ,
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For the time-modulated pulse torquing scheme the equatidns for

.the sine and cosine coefficients are:

km-1

_ M ) ) .
S, = o Z [ (2 cos nwd, - cos nwh) cos newhi
i=0
+ (2 sin nw zi- sin nwh) sin nwhi] (3.4-9)
km-1 _
C = M [(2 coS nwi. - COS nwh) sin nwhi
n mnm : i
i=0

+ (2sin nw Ei- sin nwh) coSs nwhi:\ 2.4-10)

ywheren, m and k are defmed as above M is the absolute value of the torque
level; z is the width of the posmve torque pulse in the 1th interval; each
mterva.l has both pos1t1ve and negatlve pulses and has the total width, h.

The bias Fourier coefficient is given by:

-1

: km -
_ M :
B Al . B = ﬁ' Z I:zzi = h] (3.4-11)
. i:o

Since h is very small compared to one test motion period, and since
' «zi‘is‘less than h, we can employ the following small angle approximations:

!

cos nwh = cos nwg = 1 l

n .

sin -nwh nwh (3.4-12)

Ccos nf.«.uai ne k. )

118



THE-ANALYYIC SCIENCES CORPORATION

The equations given above reduce to the following set of unified, approximate

expressions:

km-1

2hM . .

Sn = 'HTIT'" Z b1 sin (nwhl)
i=0

km-1
of roro Cn ¥ T
i=0

where we have used T = 2n/w and the definitions:

o
|

sgn (M;j) (binary and ternary)

2 - h/2

1

2hM bi cos (newhi)

b, = —h7§—(pulse-vridtl_1 modulation)

(3.4-13)

(3.4-14)

(3.4-15)

(3.4-16)

(3.4-17)

Note that Egs. (3.4-13), (3.4-14) and (3.4-15) look like discrete approxi-
mations to Egs. (3.4-3), (3.4-4) and (3.4-5) for the analog-rebalanced case,

In both cases, the sensor output (the continuous signal, e. or the sequence,

b;) is multiplied by the "weighting” functions (sin nwt or sin nwhi and

¢os nut or cos nwhi) and integrated or summed to produce the desired

Fourier coefficients (8, and Cp).
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3.4.2 Least Squares Estimation

| A least squares estimation procedure is outlined in Section 3.2.4.
This procedure applies to the case in which the data is a sequence of intégers
(z1 » Zgree .z].), each representing the integral of tor'que over a specified
interval of time, The least squares estimate of the vector:

S

1
C1 .
x = (3.4-18)
S2 .
Cs
~ of harmonic coefficients is given by:
- T "1 T
x=(H'H H 2z (3.4-19)
- where the measurement matrix, H, is: -
1. g bp; q]
1 1 1 1
I &
. T ,
B = = (3.4-20)
w L]
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where:

f = - cos whi + cos wh(i-1)

i
g = sin whi - sin wh(i-1)

L p, = -3 cos 24hi + X cos 2uh(i-1)
q = -21~ sin 2whi - sin 2uh(i-1) (3.4-21)

Processing data by means of Eq. (3.4-19) is essentially similar
Al
to Four1er analysis, in that we are multiplying a sequence of measurements
by a set of periodically varying weighting functions (the elements of HT) fo

obtain estimates of the various harmonic coeificientis.

The computation can be simplified in practice if an integral
number (say k) of data intervals, h, occur in one test motion period. In

th1s case the elements of each column of H are cyclically repeating:

\."s,..‘ .

£ e Tt T o

etc. ] ' (3.4-22)

These sequences of repeéting elements multiply the sequence of measure-

ments:

Z. Z. Z. -
i’ i+k? i+2k?
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Therefore, we can add up the raw pulse count data in k sections. For
example, define the k sums:

m-1

2, = DY 2 g G°1,2,...K) (3.4-23)
=0

~where m = j/k, the number of test cycles. Then:

T Y \

H B Hkx4 Zk

km x4 Zkm (3.4-24)
where ﬁgx 4 is the single-cycle measurement matrix, which repeats itself
m times as a partition of HT, as follows:

' T ! ~T ! T b
HY = [HT B E: O - ;HT] (3.4-25)
1 1 -

TonErs T

When this simplified procedure is used, the on-line (real-time) data pro-
}:essmg function involves Eq. (3.4-23) only, generating the k outputs,

Lzl_ t_hrough Zk'

3.4. 3 Kalman Filtering

In Appendix C the phase Ia data processing problem is formulated
- as a problem in linear estimation for which the Kalman f{ilter is an optimal
solution, This formulation is a useful analytical device for determining the

effects of random process noise and measurement noise on the test accuracy
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(Séétion 3.2-5) and the useful test duration (Section 3.3). This section
discusses the advisability of using a Kalman filtering algorithm in
processing real test data — the form of the equations to be mechanized and |
f?he: advantage there might be in using Kalman filtering in preference to
.ff_ourier analysis. |

S The following Kalman filter equations are appropriate for the
continuous (analog rebalanced) case:

x(t) = K(t) [z - H) x0)] (3.4-26)
T k) = Lpw)aTe) (3.4-27)
g r
G P BU, |
frovo P(t) = Q-;P(t)H (t) H(t)P(t) (3.4-28)

where x is the optimal estimate of the seven-state (five, if third harmonics
are igﬁored) state vector X composed of the set of Fourier coefficients, z
is the time-varying scalar measurement (the output of the sensor) and K is
the Kalman filter gain matrix which in this case is a 7 x 1 column vector.
H is the measurement matrix (in this case a 1 x 7 row vector) with
periodically time-varying elements:
S j'_“H(t) = (1, sin wt, cos wt, sin 2¢t, cos 2wt, sin 2ut, cos Jwt)

| (3.4-29)

and P is the covariance matrix of the estimation error:

T

P = (x-% (X-x (3.4-30)
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The constant scalar r and the constant matrix Q characterize the
measurement noise and process noise, respectively, as discussed in
Section 3,2-5, For any given test set-~up, Eq (3.4-28) could be integrated
in advance and the result could be substituted into Eq. (3.4-27) to produce

a gain matrix with time-varying elements. This function could then be used
in real time in Eq. (3.4-26) to process actual test data, z(t). If the actual
tgst is generated in digital form, an alternate expression, based on the

discrete form of the Kalman filter, may be used.

Appendix C demonstrates that after some time has elapsed from
the start of a test, the Kalman filtering equations above become approxi-
mately equivalent to the Fourier analysis procedure in which successive
gyc;les of processed data are averaged together. Therefore, the only

Bbvmus difference in the Kalman filter procedure involves the way the data
i‘rbfn the first few cycles are processed. The filter estimates in these early
cycles should be superior because all available information, including prior
éé_timates, is being used in an optimal way. Since certain sensor parazhetérs
should be known accurately prior to the test this advantage may be quite
%%g?}ificant, especially if the data processing equipment imposes severe
limits on the amount of data which can be handled from a given test.

There is another potential advantage of the Kalman filtering
approach which can be significant if some of the sensor parameters undergo
significant changes during the course of a particular vibration test. The
formulation of the problem can be expanded to take account of such changes
(with, for example, a random-walk model) and the changes can be ;'tracked"
during the test, with the result that the optimal estimates produced are
significantly more accurate than those generated by Fourier analysis or

éimple least squares estimation. It is expected, however, that the
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parameters under consideration will not change fast enough to make this a

strong consideration in choosing a data processing scheme.

In summary, there are two potential advantages of the Kalman
filtering approach — the inclusion of prior estimates and the possibility of
tracking parameter changes, but more study is required before a definite

recommendation concerning its use can be made.

3.5 EXAMPLE CALCULATIONS

This section presents the results of illustrative numerical cal-
culations coi‘resmmding to an analog rebalanced single-degree-oi-freedom
gyro undergoing angular motion tests. The six recommended test motion
axes and all three types of testing are included. The calculations include
test errors, typical torque levels, and the variation of torque levels with
test motion quantities. The test errors é,re based on the formulas developed
in Section 3.2. The error calculations provide a quantitative accuracy
comparison of the three types of single axis testing, augmenting the dis-

cussion at the end of Section 3.2.1.

3.5.1 Torque Levels

Table 3.5-1 lists the values of the parameter groups used i.n the
example calculations. Table 3.5-2 lists the y A and yterms corresponding
to the given gyro parameters, the assumed test motion guantities W and
w (the same amplitude and frequency are used for all six test axes), and the
torque amplitudes (M- Ml and My) which occur during sinusoidal testing.
Note that MJ\ is the same as the value, AW, corresponding to a constant rate
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TABLE 3.5-1

ASSUMED GYRO PARAMETER VALUES

= | - = ; 2
kl Ioi asloo 1 gm cm
= = 2
k2 Ioo 100 gm em
= = 2
k3 Ios * C!iloo 1 gm cm
ky=-H = -10% gm cm?2/sec
k. =-aH= 5 gm em2/sec : (g = -10 sec)
= = 2 K =
ke = B H 5 gm cm</sec (B, = 10 sec)
kp=-ly - Bo(lss -1 )= -1 gm cm2
g r °r
k8 =Q = 10 gm cm?
= . - - = 2
l'l9 Ios Ty (ISS Iii) * B (Iss Ioo ) 1gm cm
g *r r
Y - 2
k10 = (H /K)-— (ISS -Iii) =50 gm cm
= - - = o 2
kil Ioig %s (Iss Iii) 1 gm cm
kg = - (Hz/K) - (Iss —Iﬁ) = -0.05 gm cm? sec
kyg = - (Ioo/K)H =-0.1 gm cm? sec?
kyy = (Ioo/K) (I_ss 'Iii) = 5x 10° gm cm? sec?

K = 108 dyne em/radian
(Tss-1;i) = 50 gm cm?
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TABLE 3.5-2

ILLUSTRATIVE TORQUE LEVELS

Sinusoidal Test Motion: W = 1 rad/sec, w= B.2B rad/sec (1 Hz)

Test " R a ' M AW ¥ M,‘*%M

Axis (dyne ¢m sec’) {dyne cra} fdyne em fec) {dyne cm) (dyme cm uec2) ’ {dyne cm}

° X, = 100 €28.0 k= 5 5.0 k= 10 5.0
. s k=1 8.18 kg= B ‘ 5.0 kg = 1 0.5
Sy R 5 - .
A R k=1 6.28 -k, = 10 mr kel 0.5
Sl - . 1 ( x ) .5 449.0

—_— + -
VAR 1 . t
L —(ks-*ks = 7,07 7.0 5(-k7‘ks¢kn = 8 20
JRNE k. = 0.1 ﬁ
13 0.16

£

. 1 1 1

/e —-—(k + ) 7.5 449.0 ——(k *k) = T2, W0 (k +i, +k ) = 2.5
cam || AV VAN 7010 2\ u) 7 8

; . 1 1
SRTY, RO | It = K =
S f'( +k3) 1.414 8.89 (k * ™0, 700 3% =2 12.5
—

test at the rate, W, and My is one half the value, sz, corresponding to a
pons_tant rate test at the rate, W. The larger torque levels occur as Ml
when the test axis is i, i/o or i/s; these involve gyroscopic terms, Hwi.
Theé medium-sized levels occur as M when the test axis is o, o/s or i/o;
iﬁeéé involve ouiput axis inertia terms, Ioowo‘ All other terms are
relatively small, The M_terms, which are not included in the table, are

extremely small. For example:

= 0.013 dyne cm

3 3
M = — W
YR _

— e st T s T T ‘

[ Reproduced from iy
| best available copy. "Fi§

—_—
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~ Similarly, the y term involving k1 4 is:

= 1 k14 wW3
P14 8/2

= (,000028 dyne cm

The'variation of test torque levels with the magnitude of the applied
test motion quantities (W and w) is illustrated in Figs. 3.5-1 and 3.5-2. The
torque levels corresponding to each basic parameter group which contributes
torque in the o, s, and i axis tests are plotted versus W in Fig. 3.5-1 and the
left hand side of Fig. 3.5-2. The right hand side of Fig. 3.5-2 plots the
torques produced in the o/s, i/o and i/s axis tests by those parameter groups
(kg, klO’ kll and k13) which do not contribute in the first three tests. The
contributions of the parameters already covered in the previous plots are not
shown. For example, k, produces large torques in both the i/oandi/s
axis cases; their magnitudes are 1/f2' times the value shown {labeled Mk_i)
for the i axis test. ' )

The M,u levels (Mkpkz,ks) are linear in both W and w., The M,
levels. (Mk4 ke k) are linear in W and independent of w. The M_ levels
B T0RE S 3 . Y
(qu,kg, kg, k10, kll) are proprotional to W and independent of w. The

MH term, Mkl 3 is proportional to w2 and linear in w.

- Itis worth noting that for a fixed amplitude, A, of angular
excursions in a sinusoidal test, all of these quantities vary with frequency.
Thus, if:

hest = A Sin at (3.5-1)
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*

Then

Wost = Stest = wA cos wt | '(3.5-2)
’i‘herefore:
W = wA (3.5-3)
and:
M,‘l = pwW = uw A
MJ\ = W = JwA (3.5-4)
M,y = %‘YWZ = %yszh

3.5.2 Test Errors

Table 3.5-3 lists the assumed set of error source values used in
the example error calculations which are summarized in Tables 3. 5-4
through 3.5-9. The calculations are based on the error formulas given in
Table 3.2-2, for the three types of single-axis testing and each of the six
test motion axes. For two of the eleven error sources listed in Table 3.5-3

alternate values are glven, one for small signal cases (test axes o, s and

o/s) and one for large 51gna1 cases (test axes i, i/o and i/s). The quantlzatmn

level, q, is considerably smaller in the small signal cases because of the
0pportumty for scaling the rebalance loop to take advantage of lower signal

-levels It is. also assumed that the parameter shifts, Agy, are larger in

o

i‘
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R-1232

10 .
MOTION ABOUT MOTION ABOUT
OUTPUT AXIS ' SPIN AKIS
10° | -
104
10?
/
t 10°
k-4
s
=2
L
&
s 10
-
]
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01
0o 0.01 c) .
Wirad/sec) W {rad / sac)
Figure 3.5-1 Variation of Torque Levels With Test Motion

Amptlitude and Frequency: o and s Test Axes

e

130 -



THE ANALYTIC SCIENCES CORPORATION

. R-1234
10
- | " MOTION  ABOUT “o/s " TEST: kyp ks
pom ‘-3
, IO - |NPUT AXIS “UO" TEST-k’
“ifs" TEST: kyp
‘ o'l N

A\

Torque { dyne cm)

001
W{rad/sec} W (rod /sec)

Figure 3.5-2 Variation of Torque Levels With Test Motion
Amplitude and Frequency:i, o/s, i/o and i/s
Test Axes o :
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TABLE 3.5-3

ASSUMED ERROR SQURCE VALUES

T = 100 sec
h = 0.1sec (N=10/cycle)

L Error Source Value
- ———— e et e e er—— ]
1. Magnitude Bias, 5W : ~10.02 rad/sec
- (sinusoidal) :
2. Distortion, A - 1x10°3
" (sinusoidal)
3. —Magnitude Noise, 0Ty - 10.02 rad/sec, 1 sec
" (sinusoidal)
4, Misalignment Bias, € 10.0 Sec
5. Misalignment Shift, sp 5.0 Sec
(constant rate)
6. Table Wobble, €, 1.0 Sec
7. | Quantization, qsm/qIg 0.4/40.0 dyne cm sec
8. -Torquer Scale Factor, €3C 2x 10_4
PR |
T €4 2x10
9. Torquer Nonlinearity, e, (¢ 2x107" (dyne cm)'1
€3 1x 1010 (dyne cm)-2
10. Measurement Noise, O Ty 2.0dyne cm, .01sec

ASHgm /J\sﬂlg 0.1/1.0 dyne cm sec

11. Parameter Shifts, YSHgm /7SHig 0.1/0.5dyne cm sec2

{constant rate)

Mcgy 0.01 dyne cm
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TABLE 3.5-4 -

EXAMPLE ERROR SUMMARY: o TEST AXIS

bk A=k v

= 100 dyne cm sec? = 5 dyne em sec =10 dyne cm sec2

Sinusoidal
Constant Rate ’ [Averaging Sinusoidal Harmonlics
X Y ¥ 7] A Y
1. Magnitude Bias W 2.0
¢ 0.1
0 0,2 ‘ 0.2
2, Distortion a o 5
A 0 1,28
3. Magnitude Noise Ow 0,42
0 0.24
0 0,687 0.67
4, Misalignment Bias 3 a
5.0 5o
i 0 0 0
5. Misalignment Shift ?SH — i === ~—
1.25 --- ---
6. Table Wobble, w 0
0.5 1]
0.25 0 0
7. Guantization a 0.007
0.018 0.046
i 0.008 0.003 0,082
8. Torquer Scale Factor «g. f 0.02
| 0.001 0.001
- ! 0.002 0.002 2.002
9, Torquer Nonlinearity € ) ' 0.104
€L {€2p) 0.00001 0
£3); 0.0001 | ©0.002. 0.001
10. Measurement Noise o ; 0.013 :
0.7 0.079
0.40 D.16 0.18
11, Parameter Shifts lSH ===
YsH 0,142 __._
Mesn) | 0.0 | --- | -
Total (RSS) o, 2.0%
o, 5.67 5.01
oy 1.34 0.72 1.45

-
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TABLE 3.5-5

EXAMPLE ERROR SUMMARY: s TEST AXiS

"':ks

= | dyne cm a:e::2

l=ke

= 5 dyne cm sec

¥~ ky

= ] dyne cm secz.

Sinusoidal .
Constant Rate Averaging Sinusoidal Harmonics
A Y ¥ n X r
‘1. Magnitude Bizg W 2.90%
0 0.1
0 0.02 0,02
2, Distortion A ) 0
--- 0
o 0 0
3, Magnitude Nolse [ 2.04
et w 0 0.24
i 0 0,21 0.21
4, Misalignment Bias € i 0
2.0 5.0
0 [} 0
§, Misallgnment Shift ?SI-[ ——
1.285 wam —
6. Table Wabble C 0
0.5 0
0.25 0 0
7. Quantization q 0.007
{0.016 0.046
1 0.008 0.003 0 092
8. Torquer Scale Facter 0 | 0.0002
0.001 0.001
0.0002 0.6002 0.0002
§. Torquer Nonlinearity ) )
€y 492 ¢ 10.000001 0
G 0,00001 0 0
10, Measurement Noise o, 0.013
0.79 0.079
| 0,40 0.16 0.18
11, Parameter Shifts ASH .-
YSH 0,142 ——
Mesy 0.0m
Total (R3S} oy 0.045
o6 5,87 5.01
[
L4 1.8 0.21 10.29
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TABLE 3.5-6

EXAMPLE ERROR SUMMARY: i TEST AXIS

p= kl A= 'l:4 y= k,Ir
=1 dyne cm m=.~¢:2 = 105 dytie cm sec = 1 dyne cm ser:2
Constant Rate i*",‘;‘::éf:é Sinusoidal Harmonics
—_— 8 ¥ Y M A v
: 1. Magnitude Blas W 0.02
0 2000
- 0 0,02 0.02
" | 2. Distortion a 0
- 0
. — 5 So
: 3. Magnitude Noise ow 0.04
0 33.%
;' 0 0.21 _ 0.21
‘ 4. Misalignment Bias T o
(] 0
. 0 0 0
5. Misalignment Shift sy ==
0 ———
H :— D ——— R
6. Table Wobble i 0
I 4 )
, 0 0 0
7. Quantization q } Q.728
P 1.63 4.58
t 0.815 0.326 9.16
8. Torquer Scale Factor rgo 0.0002
.—_.__ 20.0 20.0
P 0.0002 | 0.0002 0.0002
¢, “Torquer Nonlinearity QG 0
....... ‘HL §€2 3.0 16.0
He 3) | 300 | 255 17.0
10, Measurement Noise o, : 0.013
o 0.79 0.079
. 0.40 0,16 0.16
11, Parameter Shifte ASH i —
TSH 1,01 -—
Mesn) 0.50
Total (RSS) oy 0.73
L o) 20.3 2000
Ty
30.0 25.5 201
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TABLE 3,5-7

EXAMPLE ERROR SUMMARY: o/s TEST AXIS

#ey © (kp+kg)/,f3

= 71.3 dyne cm sec

= = 3
p(sﬂ k“ 0.1 dyne ¢m sec

A = (kgkg)/ S

= 7.07 dyne cm sec

y = (-kpekgeky)/2
= @ dyne cm aec

Constant Rate il"::::;f:; Sinusoidal Harmonics
A ¥ r Hep 748y} Y y
1. Magnitude Blas &W L.53/0.004
0 0.14
. 0 §.12 0,12
2. Distortion A 0
: .- ]
- o 0,89
3. Meagnitude Nolse o 0,36/0.084
. [i] 0.28
) 0,52 0,92
4. Misalignment Bias 4 0
2.0 2.9
0 0 0
5. Misalignment Shift iSH -
2.3 -
- > — —
8, Table Wobble L 0/1,0
0.5 0
0.25 ¢ [}
7. Quantization q 0.007/0.007
0.016 0,046
0,008 0,003 0.092
8. Torquer Scale Factor ‘e 0.015/0
0.0014 00,0014
0.0012 0.0012 0.0012
9_. Torquer Nonlinearity o9 ) 0,001/0
enndczs llo.00001 0
3 0.0001 | 0.13 0.001
10. Measurement Noise L 0.013/0,012
0.79 0.079
0.40 0.16 0. 186
11, .-
1. Parameter Shifts aSH
dey 0.142 ---
Megy 0.079 .- .-
Total (R5S) c“ 1,57/1,00
a 5,87 5.01
o
r 1.34 0,55 1.04
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TABLE 3.5-8

EXAMPLE ERROR SUMMARY: i/o TEST AXIS

= (ky+kp)/ /2 A = (kg+ks)/f2 ¥ = (ky+kg+kg)/2
="71.5 dyne cm 8ec = 70,000 dyne cm sec = 5 dyne cm sec?
Sinusoidal
Constant Rate Averaging Sinusoidal Harmonlca
A Y Y B A b4
1. Magnitude Bias [3+7] 1.53
1] 1414
0 0.10 0,10
2. Distortion A 0
e 0
B 142
-3. Magnitude Noise o ) 0,36
0 28.2
0 0.417 0.47
4, Misalignment Bias € 9
3.53 3.53
1] 1] 0
5. Misalignment Shiit Ton -
1,77 a—a
0. 83 === -
6. Tahle Wobble ‘w 0
0.353 0
0.177 4] Q
7. Quantization q 1.63 0,728
' 4.58
0,815 0.326 9.16
8. Torquer Scale Factor ¢g. ! 0.0153
P o141 14.1
i 0.001 | 0.001 0.001
8, Torquer Nonlinearity 4 § 0.0006
wu$2r i 135 ) 6.9
€3) | 13,53 18,1 12.1
1C. Measurement Noise o, \ 0.013
0,79 0,079
Q.40 0,18 0,186
11, Parameter Shifts ;‘SH -——
sy 1.01 -
Megy 0.50 --- -
Tatal (RES) o" 1.73
% 14.8 1414
% 13.8 18,1 143
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TABLE 3.5-9

EXAMPLE ERROR SUMMARY: i/s TEST AXIS

B= (k1+k3)/ﬁ

=1.414 dyne cm sec

A = (ky+kg)/S2

- =0, 7000 dyne cm sec

¥ = kyp/2

= 25 dyne cm sec

Constant Rate iij:f:éf:é Sinusoidal Harmonica
A Y 4 u A ¥
1. Magnitude Bias oW 0.028
0 1414
0 0. 50 0,50
2. Distortion A 0
--- 0
——— 0 141
3. Magnitude Noise Tw 0.05
1] 28.2
0 1.06 1.06
4. Misalignment Bias 3 0
: i 3.53 3.58
. 0 0 0
§. Misalignment Shift fgH -
1,77 -
i 0.88 -- .-
8. Table Wobble ‘W ] 0
' 1 o0.353 0
i 0.177 i} 0
7. Quantization q ; 0,728
¢ 1,63 4,58
i 0.815 0,326 9.18
‘| 8, Torquer Scale Factor tgp : 0.0003
14,1 14.1
. 0.005 0.005 ' 0.005
9. Torquer Nonlinearity € 0
b AN 1.35 6.9
‘3 . 13,53 18,0 12.0
10, Measurement Noise o, | 0.013
;0.7 0.079
) D. 40 0,16 0.16
11, Parameter Shifts gy ! -
YSH ;101 i
Total (RSS) o, i 0.73
N 14,9 1414
Y 13.6 18.0 142
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in the large signal cases; these shifts represent very small percentage
changes in very large quantities (see Table 3. 5-2). The assumed test

motions are:

T W1 = 2 rad/sec
' constant rate tests
- W, = 0.1 rad/sec

1 rad/sec

€
n

sinusoidal tests

]

W 27 rad/sec

‘The calculation of the time-dependent errors is based on the test time:
T = 100 sec.

In each column of Tablse 3.5-4 through 3.5-9 the values in the third and
tenth rows have been compared, and the smaller of the two dropped, before
combining errors in RSS fashion to calculate the overall one-sigma

.estimation errors, UH’ g, or U‘y’ given at the bottom of the column. (See

o A
:th'e discussion in Section 3.2.1.) In each column the one or iwo largest

contributions to the overall error are underlined.

Table 3.5-10 summarizes selected results from the six preceding
_tables. For each of the parameter groups, k1 through k11 and k13, the test
axis which appears best suited for determining that parameter group is
“shown in Table 3. 5-10, -along with the corresponding one-sigma estimation
‘error. For example, k7 =y for spin axis tests and input axis tests, but the
one-sigma estimation error, cry, is much smaller in the former case

(compare Tables 3,5-5 and 3.5-6), so the value for the spin axis test is

wn
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R ' o TABLE 3.5-10

EXAMPLE ERRORS: SUMMARY COMPARISON

Basic " 1o Error/Largest Contributor
Parameter Best | Nominal Value T ginuaoidal | Sinusoidal
Parameter(s) Group Type :;_s;c of Parameter Rate Average | Harmonic
Ky m i g | == - 0.73/q
.1 ol = 1 dyne c¢m sec
g Ksy ¥ o/s T 928/, [1.33/a, 2.55/A
loo = ky B o 100 dyne cm sec? - - 2.05/8W
" s - --= | 0.045/0
.Ios . £ k3 1 dyne cm sec? . w
Bt 2 k9 ¥ 1/o 21.3/:NL2 5 36.2/@NL1 143/4
Is-i; ) 2 k, ¥ 8 1 dyne cm sec? 1.34/ gy 0.21/‘0“r 0.23/crw
H = k, 3 | 10% dyne ¢m sec | 20,3/ sC —— 20600/6W
o i = kg A o | Sdynecmsec |5.67/¢ - 5.01/¢
BOH = kB A 8 5 dyne cm sec 5.687/¢ - 5.01/¢
Q = kg ¥ o 10 dyne cm sec? | 1. M/t [0.72/a, 1.45/a
.ig’ \
F -Al = LI ¥ /s 50 dyne cm sec 27.2/:NL2 . 36, u/em_1 284/4
¥
3oo
X H = k:s ¥ o/n 0.1 dyne cm sec3 - - 1.0/'('W

included in Table 3.5-10. With each numerical entry is a symbol
indicating which of the eleven error sources contributes the most to that
particular estimation error. For example the error in esf:irnating'k8
(which is best determined by one of the o axis tests) is dominated by
misalignment shift (egy), test motion magnitude noise {oyy) or distortion
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-(A),- depending on which of the three types of test is used (refer back to

_.Tal.)le 3.5-4), The parameter groups, k12 and kl 4> 2re not included in the
example error calculations because of their extremely small size, (see
Section 3.5-1). ‘

With three exceptions (kg,kio and kq1) the one-sigma estimation
.errors given in Table 3.5-10 are simply the appropriate RSS values
(o.u,crk,cy ) given at the bottom of Tables 3.5-4 through 3.5-9. For
example, the value 0, 73 for the k1 estimation error comes from the value
for o“ given at the bottom of Table 3.5-6. However, kg and kll appear only
in combination with 14:7 and k8 in the definition of ¥ in the o/s and i/o test
axis .cases, respectively. Therefore, k,? and k8 must be estimated first

(using s and o axis tests) and subtracted from the current estimate of yas

follows:
129 ] 2;'0./5 B ﬁ? B l28 |
ii:w = z;o/s-{fs-{zo | (3.5-17)
l‘-&11‘, = 27+ by - Ky
= Z;i/o +y, - y

(3.5-8)
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The values shown in Table 3.5-10 for kg and oy are computed from
| 172
= [4 02 + 02 + 02 ] (3.5-9)
0

and

_ . 1/2
6 - [4 o2 402 4o ] (3.5-10)
11 Yilo Ys Yo
In a similar manner:
) 1/2
o) = [4 o ] (3.5-11)
10 %/s

Table 3.5-10 is arranged to illustrate the relative difficulty in |
determining the various individual parameters (Ioi , Ioo’ etc) using the
several types of single axis testing., For the error source values assumed

here, it may be observed that:

¢ The cross product of inertia, loi,, May be determined as
kq by sinusoidal harmonic testing about the input axis or
as kq1 by any of the three types of testing about the o/s
axis, The smallest of the estimation errors shown cor-
responds to the first method (even though it is a large '
signal case -- the pterm is not affected by distortion,
nonlinearity and magnitude bias the way the A and y terms
are). However, all four values are of the same order of
magnitude and each has a different largest contributor, so

. the relative estimation errors are very sensitive to the

error sources. . -
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e The cross product of inertia, Ips,, may also be determined
in any one of four ways, as kg3 (01$e way) or as kg (three
ways). In this case there is a clear preference for finding
k3 using sinusoidal harmonic testing (about the s axis),
since nonlinearity and distortion have major effects on the
determination of kg, which requires the large signal test
axis i/o. : :

e The cross product of inertia, Igj , may be measured in any
one of three ways, with angular fotion about the spin axis.
Sinusoidal testing (averaging or harmonic) appears
significantly more accurate than constant rate testing,
although this conclusion depends on the values of the dominant
error sources, which are different for the three cases.

e The output axis inertia, Iy, appears as a u term only, and
measuring its eifect requires the use of sinusoidal harmonic
testing about the output axis. The dominant error source
appears to be uncertainty in the knowledge of the applied
test motion amplitude. '

e Measuring the wheel momentum, H, involves rotation abeout
the input axis, using a constant rate on a sinusoidal oscillation.
The former is much preferred because the applied constant
rate magnitude will be known more accurately than the
amplitude of the oscillation. '

e The misalignments, og and 8,, of the sensitive axis of the
gyro may be determined using constant rate or sinusoidal
harmonic testing about the output and spin axes, respectively.
The two types of tests appear to be approximately equal in
accuracy since both are dominated by the bias misalignment,
¢, of the test axis. However, if the procedure of reversing

y the sensor on the table top and repeating each run is used,

S the bias misalignment e ffect may be largely eliminated. In

that case different error sources hecome dominant in the

two cases: misalignment shift for constant rate testing, and
test motion magnitude noise for sinusoidal harmonic testing.

¢ The experimentally observed error term, Q, may be
measured in any of the three ways, rotating about the output
axis. The smallest estimation error shown in that cor-
responding to sinusoidal averaging, although all three are
roughly equal and each has a different largest contributor.

. "
5
*

143



.THE ANALYTIC SCIENCES CORPORATION

e The kig parameter group, Hz-/ K-(Igg-1jj), may be measured
in any of three ways, rotating about the i/s axis (a large
signal case). Sinusoidal harmonic testing appears useless
due to the large distortion effect. The estimation errors in
constant rate testing and sinusoidal averaging are dominated
by torquer nonlinearity, the odd nonlinearities, €9 and €3,
in the former case and the even nonlinearity, €1, in the
latter case. In actual practice since kjg is made up of

e "desired'" or nominal gyro parameters, its value should be

U known a priori more accurately than it can be determined by

R either of these i/s axis tests. This suggests that the reason

for running such tests may be to compare the indicated and a

priori values of k19 and to employ the differences as

measures of the two types of torguer nonlinearity. The
: resulting measures of the nonlinear terms ‘can then be used

PRIy to correct the estimates of kg as obtained in the i/o axis

tests. A set of input axis tests can also be run to obtain

another measure of the nonlinearities,

e The k13 parameter group, IooH/K, appears only as a u
ferm and only in the 0/S axis sinusoidal harmonic test.
re iy Based on the assumed error source values and parameter
" values the one-sigma estimation error is considerably
larger than the nominal value of k13. The dominant error
source is table wobble, &,. Removal of its contribution
Tl - reduces the overall error to 0.085 dyne cm secS. Since
the value of ki3 is well known a priori, an attempt to
measure it in this way might be useful in verifying the
WOIOUS accuracy of a sinusoidal harmonic testing set-up.

In summary, the reasons for considering the use of sinusoidal

e -

;_‘lr_x_a‘_ljkmonic testing are that it provides the only way to measure the effect of

?IOO"“:

.of several other gyro parameters in the small signal cases (test motion

the best way to estimate I5g and reasonably good redundant estimates
axes o, 5, and o/s). Sinusoidal averaging does not yield anything that is not

provided by constant rate testing, but appears to have better accuracy in

several cases.
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. The example calculations summarized above are based on the
erfer formulas developed in Section 3.2 and tabulated in Table 3.2-2.
In th1s case the formulas are used to compute parameter estimation
accurac1es for an assumed set of error source values and test motion
quanhtles. The same formulas can also be used, in a less straight-
forward fashion, to generate test equipment performance specifications for

g1ye_r; desired estimation accuracies.

Chapter Summary. — The information which may be extracted

from single-axis vibration tests and constant motion tests is identified.
The effects of various test error sources, such as test machinery errors

and measurement errors, on the accuracy of estimating various observable

P
i I

quant1t1es are analyzed. The different types of tests are compared on the
que of observable quantities, data redundancy, number of test runs

Eegg;fed data processing difficulty and accuracy.

4

S6UTCT A)) pasic parameter groups can theoretically be computed from
the observable quantities obtained in a sequence of six angular and six linear
single-axis vibration tests if the harmonic content of the periodic applied

s.-,--_s-

torque function is extracted. The six test vibration axes should be oriented
parallel to the three principal sensor axes--input, output and spin (or
pehdulum)--and to the three axes lying midway between pairs of principal

axes._ The full array of observable quantities from a complete test sequence

- .-

pr&wdes a considerable amount of redundant data which ”overspec1f1es" the

[N

basic parameter groups.

a1
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e S~ o =

A sequence of sinusoidal vibration tests in which only average
torque measurements are made yields only the parameter groups which give
torques proportional to the square of angular rate or acceleration, and no
redundant data. However, the data processing requirements for determining
-average torque are considerably simpler than for extracting harmonic terms.
Extraction of certain harmonic terms provides redundant measurements of
these parameter groups but they are generally less accurate than the

measurements based on average torque.

All of the parameter groups except those which generate torques
proportional to angular accelerations can theoretically be computed from
the data produced in a sequence of constant motion tests. More test runs are
required since two or more different magnitudes must be used for each test
axis in order to separate the effects of various parameter groups. The data
processing function is the same as in sinusoidal averaging, and therefore
simple. Parameter estimation errors are more affedted by some test error

sources and less affected by others, as compared to sinusoidal testing.

TV o

The data processing function for sinusoidal harmonic testing con-
sists of three phases. The first phase, in which harmonics are extracted
from the sensor output data for each run, directly influences the choice of .
laboratory data processing equipment. Three candidate types of processing
algorithm, Fourier analysis, least squares estimation and Kalman filtering,
are considered and developed in some detail. The second phase is the com-
putation of the basic parameter groups from the redundant array of Fourier
coefficients. The third phase is the solution for individual sensor

parameters,

-
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The choice of test duration, for constant rate tests as well as
sinusoidal tests, is governed by the need to reduce. the effects of quantiza-
tion and uncorrelated measurement noise. The Kalman filtering formula-
tion of the data processing problem is useful in deriving relationships
between test duration and test accuracy. Smularly the least squares esti-
mation. formulation is used to show the effects of total test time and the

sample interval size on overall test accuracy..

Detailed numerical results of a set of exémple calculations,
corresponding to a typical SDF gyro undergoing a sequence of six constant
rate and six sinusoidal angular motion tests, are presented. These resulis
mclude the torque levels associated with each basic parameter group and

the variation of those levels with test motion quantities. Also illustrated is
the. apphcatmn of the entire set of test error formulas (given in Table 3.2-2)
for each of the three types of single-axis tests considered and each of the
six. recommended test axes. A summary comparison of the predicted errors

in. est1mat1ng ten potentially significant quantities is given in Table 3.5-~10.

-

P
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4. IMPLICATIONS FOR TEST LABORATORY EQUIPMENT

The investigations described in the previous two chapters lead
to some rather important conclusions and recommendations concerning
the choice of laboratory equipment., These recommendations must be
considered tentative at the present time since the investigations are
incomplete. They are included, however, in the hope of stimulating fur-

ther discussion and interchange of ideas.

4.1 TEST MOTION MACHINERY

A significant overall recommendation stemming from the study
to date is that great stress should be placed on the appropriate use of
conventional single-axis devices, together with vibratory and constant -
motion, for testing strapdown inertial sensors. In order to obtain the |
maximum usefulness from the test data, careful attention should be given -
to techniques for controlling and/or measuring the supplied motion and to

the means for processing the sensor output data produced during the tests.

The following conclusions pertain specifically to single-axis
testing of single-degree;of-freedom sensors, on which the study has

thus-far focused attention:

e Since it is essential, in sinusoidal harmonic testing,
to time-synchronize the sensor output data with the
test motion history (see Section 4, 2), the test device
must include a means to provide accurate timing
signals indicating the time of passing through a zero-
reference position. These signals must be merged
with the recorded sensor outputs or, in the case of

.-
]

Preceding page blank | 15 -
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‘real-time processing, used to control the computation

itself. Of course, other measurements leading to a
more accurate knowledge of the applied motion history
are highly desirable. '

It is more important to keep the form of the applied
motion close to that of a pure sinusoidal oscillation
than to accurately control {or kuow) the amplitude of
the oscillation. The example calculations suggest

that a bias error on the order of one percent in the ‘
applied amplitude does not generate unacceptable test
errors, while a distortion of the shape of the applied”
motion that causes second harmonic terms on the

order of one-tenth of one percent of the fundamental
motion amplitude leads to very large errors in some
cases (when the sensor input axis is along or 45
degrees away from the test axis). In some "small
signal" cases (when the gyro input axis is perpendicular
to the test motion axis) distortion is also a dominant
error source. Table 3.5-10 shows that if distortion
were significantly reduced from the assumed value, the
estimates of parameter groups kg and k11 via sinusoidal
harmonic testing could be greatly improved.

The example calculations indicate that a bias misalign-
ment of the table axis is the dominant error is estimating
component misalignments. (A 10 Se¢ table axis mis-
alignment results in a 10 $ec error in measuring og or
85, depending on the test axis.) However, this bias -
effect can be largely removed by repeating the appro-
priate tests after a 180 degree rotation of the sensor
with respect to the table. If the sensor is rotated as
described, the effects of run-to-run shifts in the table
axis misalignment and of table wobble become more
important than the bias for constant motion tests. The

‘example calculations suggest that values on the order of

several arc seconds will be acceptable for both of these
error sources,
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e As a result of satisfying the timing requirement
discussed in the first item above, the frequency of the
applied test motion will be known very precisely.
Therefore, uncertainties in the derived Fourier
coefficients caused by errors in knowledge of the applied
frequency will be insignificant (for the example calcula-
tions show that frequency errors on the order of one
percent are acceptable).

4,2 DATA PROCESSING EQUIPMENT

Ll Constant Motion and Sinusoidal Averaging — If testing is
confined to constant motion and averaging measurements made during
vibratory motion, the data processing requirements are relatively
simple. For each test run the net number of pulses, representing the
integrated torque, and the total test time must be recorded. Following

a sequence of test runs some linear algebraic equations must be solved

to y1eld estimates of the parameter groups and sensor parameters (see
Eqs (3.2-3) and (3.2-4)).

Feei Sinusoidal Harmonic Testing — For sinusoidal harmonic testing
the ‘data processing equipment required in the test laboratory is deter-
fiined mainly by the data processing phase Is (see Fig. 3.1-3). The
other phases must await the completion of a sequence of single-axis tests
and, therefore, will be performed off-line. (To the extent that some of
this subsequent processing can lead to a quick determination if a test is

euccessful, there could be a significant operational advantage in having
a limited amount of off-line capability readily accessible at the time the

tests are being performed. )
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From the point of view of laboratory equipment choices there

are basically two ways to perform data processing phase Ia:

L Recdrd the sensor output data (and measurements
of test motion if desired) for later off-line
processing. -

¢ Process the data on-line as it emerges from the
test, producing immediately a set of filtered
estimates of the observable quantities (Fourier
cos coefficients).

PR

In either case the leading candidates for a proéessing algorithm are the
Fourier analysis, the least squares estimation, and the Kalman filtering

procedures outlined in Section 3. 4,

miusy .
If the first method is used, the crucial equipment specifications

are those required of the recording equipment. They result chiefly from
the high output data rate. For an analog rebalanced sensor feeding an
analog recorder, the recorder bandwidth must be higher than the first
few harmonics of the maximum applied test motion frequency. It is not
possible at the present time to establish a quantitative requirements
since high frequency testing has not been investigated. For a pulse
rebalanced sensor feeding a digital recorder, it would be desirable to be
able to record the complete sequence of pulses in order to make full
use of the test data. In this case the required data recording rate is
simply the maximum pulse rate used by the strapdown sensors under test.
Consider the following numerical example: a maximum test time of 200
seconds and a binary pulsed gyro with a pulse repetition rate of 5000
pulses per second. The recorder must, therefore, have the capacity to
store a sequence of one million binary digits at the rate of one every 0.2
‘millisecondg. Simultaneously it must record "timing marks' in a
parallel channel, indicating the zero-reference points in the test motion
history, '
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If on-line processing is used the computer must be able to
accept data at the sensor output data rate and simultaneously, process
equations like those of Section 3.4 at this same rate. This implies very

:-short operation times for the computer used. The various sets of
equations for the sinusoidal coefficients [for example',. Eqs. (3.4-4) and
(3.4-5)] point up the need for careful time-synchronization between the

Iz output data and the applied motion. The "weighting factors,” sin net and
‘S ¢os nwt, must be cycled through 27n radians for each period of the test

L 'xmotion, without drifting out of phase. Otherwise, the computation will
<7 tiot be one of averaging m sets of properly computed Fourier coefficients.
~2T:Also, if either the least squares estimation or Kalman filtering equations
2 ‘gre used, the time-varying elements of the H matrix {see Eq. (3.4-29)]
iesmust be kept in phase with the actual applied motion history.

L= -
i PR A

Chapter Summary — Test motion machinery specifications may

S

.b.f;derived from an understanding of the manner in which test motion
errors propagate into parameter estimation errors and from the overall
v=:test accuracy requirements. The propagation of test motion errors for
constant rate testing, sinusoidal averaging and sinusoidal harmonic testing
are treated in detail in Section 3.2, The overall test accuracy require-
ments depend on the underlying reasons for conducting a specific set of
tests — whether they are research oriented or mission oriented, etc.—
as discussed in Section 1.1. The data processing functions for constant
“rate testing and sinusoidal averaging are quite simple. For sinusocidal
*-harmonic testing the data processing equipment specifications depend on
...~ whether off-line or on-line processing is used. In the former case the
recorder characteristics, which depend on data rate and test time, are
: ;-___é_r_tiéial. In the latter case the on-line computer characteristics, which
are dictated by the data rate and the detailed nature of the estimation
equations outlined in Section 3.4, are crucial.

'. ”
‘1
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B, | CONCLUSION

5.1 SUMMARY OF FINDINGS

The starting point of this effort is a set of equations (derived in
Refs. 2 and 3) for motion-induced error torque in single-degree-of-freedom
('S‘D.F‘) sensors. These error models have been manipulated in a way which
is valid for closed-loop, low-frequency testing, yielding error torque
éﬁip:fémésions which are linear functions of a set of "basic parameter groups"

defined in Table 2.4-1. All of these basic parameter groups can theoretically

be identified and measured by means of a sequence of single-axis vibration
t"é—s‘:t-‘s—' :‘includjng six angular vibration tests, and six linear vibration
tests. Al but one of them are independent of test motion frequency

and magmtude

IwoiT
<~~~ The following three types of single-axis angular-motion tests have
been studied in detail:
ehets ¢
e Constant Rate Testing
simrsie ¢ @ Sinusoidal Testing, Averaging

e Sinusoidal Testing, Harmonic Extraction

The bases for comparing the three types include the observable quantities
(ﬁméasﬁrable parameter groups), the amount of redundant data provided,
the number of test runs required, the degree of difficuity of data processing

* a
"See the discussion in Section 2.4.1 of the effect of rotor speed control
loop dynamics on kqg.

Precedmg page blankw 15 -
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required and the accuracy with which various parameters can be estimated.
(A comparison summary is given in Table 3.2-3.) Constant rate testing is
the simplest to perform but does not produce the complete set of basic
parameter groups. Sinusoidal averaging is simpler than sinusoidal harmonic
testing but yields an even smaller subset of the complete list.

- The principal data processing function for both constant rate
testmg and sinuscidal averaging is to compute average torque by generating
a net pulse count and dividing by the total time of a test run. For a sequence
of smusmdal harmonic tests there are three data processing stages: the
computatmn of Fourier coefficients defining the periodic applied torque
‘functmn for each test run; the processing of the entire array of coefficients
from a complete sequence to produce the basic parameter groups; and the
computatlon of individual sensor parameters The first stage may be
_L;__)._erfcrmed by means of Fourier analysis, least squares estimation or
kaliﬁan filtering (detailed equations for all three candidates are given in
Section 3.4). The second stage is an "overspecified"” algebraic problem
;yyolving redundant information. The extra data can be used as a cross-
check on the operation of the test sequence or as a means to indicate the
existence of error torques not included in the model. The third stage is a
ssimple algebraic problem.

Methods have been developed for analyzing the effects of various

RN

te_st error sources and of test duration on the achievable accuracy in
est1mat1ng sensor parameters. Three classes of test error sources are
cons1dered test motion errors, measurement errors and changes in the
sensor parameters. Motion errors and measurement errors have bias,
cyclic and high-frequency noise components, including the effects of
quantization. The resulting error formulas (summarized in Table 3. 2-2)

have been used in a set of illustrative numerical calculations based on an

2l
4
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assumed set of typical SDF gyro parameters. In these examples the
nomina) magnitudes of the coefficients of the third harmonic terms are
extremely small, leading to the conclusion that the significant data from
each vibration test will be contained in five Fourier coefficients (the bias
term, the coefficients of the sine and cosine terms at the fundamental test
motion frequen(':y and fhe coefficients of the second harmonic sine and
cosine terms). Constant rate testing or sinusoidal averaging appear to be
more accurate than sinusoidal harmonic testing in a number of cases.
Sinusoidal harmonic testing provides good redundant measurements in the
cases where the sensor input axis is nominally perpendicular to the test
Iri'otibn axis. It also provides good measurements of parameters and
pLarameter groups which cannot be determined by the other types of testing.
II)IEWO éituations sinusoidal harmonic testing appears to yield the most
atcurate estimates of parameters which can also be measured using one of
i:i.xli’aj other techniques.

O Ll

5.2 "RECOMMENDATIONS

1t g

The apparent effectiveness of a combination of vibration testing
and constant rate testing leads to a major recommendation of this study--

tﬁgiif -'cc")'ﬁventional single-axis devices should be given strong consideration

ot
I

when déveloping test procedures for strapdown inertial sensors. Some
ifdications of quantitative t.est equipment specifications can be drawn from
tlf-lré_"':'e:iample test error calculations presented (these are summarized in
Section 4.1).
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" ‘yibrations.

o . While constant rate testing is by far the simplest to perfoi‘m, it
is important that some cross-checking by sinusoidal averaging and probably

by harmonic testing as well, be performed. It may be desirable, for
‘example, to develop an operational calibration procedure using constant rate

testing to generate coefficients which will compensate for the effects of
system vibrations. The appropriateness of compensation so derived should
be verified by means of vibration testing, which more closely resembles

the dynamic environment to which strapdown sensors will be subjected.

If mammum benefit is to be obtained from harmomc testing,
either high speed recording equipment or high speed on-hne real-time
data processing equipment will be requ1red in the test laboratory. These
would be needed to extract the harmonic content of the rebalance torque,
averaging data taken over many test motion cycle's. A trade-’-bff between
the sophistication of laboratory data processing equipment and the complexity
‘of motion-supplying devices is apparent., For example, a sequence of
‘single-axis vibration tests combined with data processing which extracts
harmonics, can substitute for multi-axis tests employing out-of-phase

gme il

_ An overall conclusion may be stated as follows: It appears
that useful information can be obtained from a sequence of practically
achievable single-axis vibration tests. However, the test error
analysis is only as good as the assumptions on which it is based, and it is
possible that some test error'sources will be much larger than those
assumed in the example calculations, or that there are other important

‘error sources not included in the analysis. It is therefore recommended

that a set of feasibility tests be conducted as soon as possible. These tests

would apply low-frequency single-axis angular vibrations to an
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analog-rebalanced SDF gyro and use available signal-processing equipment
to determine the harmonic content of the gyro output signal. The test
results should be used to answer the following questions: o

e Do the magnitudes of the output harmonics
agree generally with predictions?

¢ What are the most significant sources of
test error?

¢  What can be done, via test hardware modi-
fications, to reduce these errors?

e After appropriate hardware modifications have
been made, what is the ""real’ data processing
problem remaining? That is, what noise sources
must be filtered; or what cyclic or bias errors
should be calibrated?

Besides verifying the practicality of the proposed type of testing, a series of
feasibility tests would provide information which would be useful in guiding
the continuing analytic studies discussed below. These, in turn, would
become more useful in producing realistic fest laboratory equipment

specifications and in developing appropriate data processing procedures.

5.3 CONTINUATION OF EFFORT

Studies related to low-frequency, single-axis testing of SDF
sensors will continue, with the goal of making specific recommendations as
to test procedures and data reduction techniques. It is anticipated that a
hybrid simulation will be employed to verify the analyses already performed
and to evaluate alternative data processing schemes, such as those discussed

in Section 3.4.
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R A better understanding of motion-affected errors which are
mentioned in Section 1.1 but not included in the presént error models, such
as fhose caused by scale factor changes and friction torques, will be

- developed. These additional error terms will also be considered in devising -

test procedures. .

) ; " The test error analyses described in Section 3.2 will be expanded
{6 include the effects of pulse rebalance schemes. The overall analyses will
be developed into a parametric study, covering a range of sensor paraméters
and test motion quantities, with the goal of providing approximate indicatidns. -
of the test duration and equipment precision required to extract sensor error
parameters to specified accuracies. To ensure the validity of the resﬁlts,

several spot-checks will be performed by simulation.

The potential advantages and difficulties of employing high-frequency,
single~-axis vibration tests on inertial sensors will be evaluated. An attempt
will be made to re-formulate the data processing problem discussed in
Section 3.4 in a convenient way 'which.does not depend on the low-frequency
assumption. A high-frequency test motion error analysis will, if needed,
also be developed. - The goal of this investigation is to indicate if information
concerning dynamic instrument errors that is not revealed by well-designed
low-frequency tests can be extracted by high frequency tests, and if so, to
providé error analyses which can be interpreted in terms of test equipment

specifications.

The importance of stability of strapdown sensor parameters
suggests that the recommended tests be employed in a sequential fashion,
aimed at measuring stability. Strapdown sensors may only be calibrated
before installation in a vehicle (since they cannot be isolated from incidental
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vehicle motions and reoriented relative to gravity and earth rate) anda
means must be available to predict, with known confidence limits, the
stability of the measured parameters. Stability will also be a prime
objective of the instrument designer, and tests which relate sensor design
features to coefficient stability will be of great value. Prior theoretical
work related to this subject will be reviewed and experiments for evaluating

mathematical models of parameter variation will be designed.

‘1_61
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APPENDIX A

DERIVATION OF TRIGONOMETRIC SERIES COEFFICIENTS:

VIBRATION TESTING OF SINGLE-DEGREE-OF-FREEDOM SENSORS

This appendix derives expressions for the Fourier coefficients

which are the observable quantities in single-axis angular and linear

vibration tests of single-degree-of-freedom (SDF) gyros and

accelerometers.

SDF Gyro: Angular Vibration —~ The general expression for

angular motion-induced torque in a SDF gyro is given as Eq. (2.4-5)

and is repeated here:

where k

1

Mang -

. 2 2 2
+ k7wi + kamo - k7w

ko + Kyl + Kgiwg

t kg + Koo + Kewg

s

+kgw;w, +Kyguywg + Ky wwg

3 2
CtEgu - Kgwwg

through k

) L2 2
+Ryglgwg * Rygowy - Kygdawg - (Aa-D

14 2re the basic parameter groups defined in Table 2, 4-1a.

- -
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A 'general single-axis angular vibration of amplitude W and
frequency w can be represented by:

w; = ciWSinwt = Wi sinwt - -(A-2a)
w, = COWsm wt = Wo sin wt | (A-2b)
Wy = cSWsin wt = WS sin wt (A-2c)

where ¢;» ¢, and c_ are direction cosines relating the vibration axis to

the gyro principal axes and Wi is defined as ciW, etc.

The derivation consists of substituting Eqs. (A-2a), (A-2b) and
(A-2c) into Eq. (A-1), term by term, and applying well known trigono-
metric identities, as shown by the following examples:

- kyay = kW, cos ot - (A-3a)
_ 2 1. )
k9wiwo“ kQWiwosm wt = ﬁ-kgwiwo(l cos 2 wt) (A-3b)
2_ 2 .3 . _1. e
- kygwiwg = kW Wesin® wt 'Ikizwiwz (Bsinwt -sin3wt) (A-3c)
o2 T 2 . 2
. k14wows— Lk14wowi w_ cos wt sin ™ wt
| = -k W W2 ] cos wt (1- coszwt)
| %1401 ¥
= Pk w sz-1 cos wt - cosswt
| 714 0 1 _
=-k w sz coSs wt-~1—(c053wt- 3 cos wt)
| 14 0 4 et
= ll«: W sz (cos wt ~ cos 3 ut) . (A-3d)
4714 0’1
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After treating all terms in Eq. (A-1) in the above fashion and grouping
similar terms, we obtain:

-

Ma,ng=B+Sl

+ S2 sin 2wt + 02 cos 2wt

sin wt + C, cos wt

+ 8, sin3wt + C, cos 3wt (A-4)

where the seven trigonometric coefficients (Fourier coefficients) are:

_1
 H[in (07 - 2) g g, + g Wi+ W

11
N , (A-5a)
Wne s 3 |

S, = k,W, +kW_+EW_+3k, (w3 ww2) ~ (a-5b)
T 1
. Cy = [klwi + Ry W+ kg W+ 7l W (w2 - wz)]  (A-5¢)

_1 .
5, = 2K g W W, | |  (A-5d)

%[ 7(w2 w)+kw2+k9ww +k Ww +k W.W]

11 o s
(A-5e)
.53 -5k 2 ( i “’iW.f,) o (A-50)
Cy = - kg0 W, (W2 - W2) o (A-¢)
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SDF Accelerometer: Angular Motion —The general expression
for angular motion-induced torque in a SDF accelerometer is given in
Eq. (2.4-13) and is repeated here: '

Mang - klwi * k2wo * k3“’p
2 2
+ k4wi - k4wp
+ kswiwo + kswiwp + k.?wowp

. 2 . 2
+kow ' - kawowp (A-6)

where kl through k8 are the basic parameter groups defined in Table 2, 4-1b.

e -~

Equations just like Eqs. (A-2a), (A2-b) and (A-2c), except that
wp’ cp and Wp are used instead of w s* Cg and WS, are substituted into
Eq. (A-6). After applying the same trigonometric identities, illustrated
in Eqs. (A-3a) through (A-3d), and grduping similar terms, we obtdin:’

Mang =B+ Clcos wt

+ 02 cos 2wt

+ C3 cos 3wt (A-T)

where the four Fourier coefficients are:
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1
B—f[k4( i W§)+k WW +k6WWp+k7WW] (A-8a)

P
C.=w|kW. +k W +k W +1 W WZ-W2 (A-8b)
1 17 KgWo * 53 P 48 o \ i p ‘
c =-Yx (w?-w?) +x.ww + KWW+l WW | (A8e)
2 2174\ 1 P 57i 0 6 T70p
C. = - Tk, W - we | (A-8d)
3= g%V Yy - Wy

SDF Gyro: Linear Vibration — The general expression for

linear motion-induced torque in a SDF gyro is given in Eq. (2.4-15)

and is repeated here:
M.lin = klfi + k2f0 + k3fs
2
* k4fi2 * k5fs
+ ksfifo + k’fiifs + kaofs (A-9)

where k1 through kB are the basic parameter groups defined in Table 2.4-1c,

A general single-axis linear vibration of amplitude A and frequency

w can be represented by:

= c Asinwt = A, sin wt | (A-102)
fo =¢ OA sin wt = Aosin wt " (A-10Db)
f = csA sin wt = Assin wt ' - (A-10c¢)

L
4
S
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Substituting Egs. (A-10a), (A-10b) and (A-10c¢) into Eq. (A-9) and regrouping,
we get:

Mlin =B+ S1 sin gt + 02 cos 2wt (A-11)

where the Fourier coefficients are:

1M a2 41 a2 _
B—2[kA +k5A +k6AA +k7AA +kAA:| (A-12a)
- 81 = kIAi + sz + k As (A-12b)
e c,=-1lk a2,k A2+kAA +kAA +kA A (A-12¢)
are o 2 2174771 5 6 i o '7Ais 8 0's

SDF Accelerometer: Linear Vibration — The general expression

for linear motion~induced torque in a SDF accelerdmeter is given in
Eq. (2.4-16), which is identical in form to that of Egs. (2.4-15) and (A-9),
texcept that fp is used in place of fs. The basic parameter groups kl
cthrough k8 are defined in Table 2.4-1d. Equations just like Egs. (A-10a),
{{A-10b) and (A~10c) can be substituted into Eq. (A-9) to yield Eq. (A-11),
exactly, The three Fourier coefficients, B, S1 and Cz, are defined '
exactly as in Eqs. (A-12a), (A-12b) and (A-12c), except that Ap appears
in place of A s Therefore:

RIRLRN 1 9 1
B=3 [k4A + k5Ap + k6A A + k,?A A+ k8A A _I (A-13a)
§; = klAi + k.?.Ao + ksAp (A-13b)
1 2 2
C, = -3 [k 4A + ksAp + kﬁAiAo + k'TAiAp + kngAp] (A-13c)
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APPENDIX B

TEST MOTION BIAS ERROR ANALYSIS:
ANGULAR VIBRATION TESTING OF
SINGLE-DEGREE-OF-FREEDOM GYRO

This appendix describes the effects of bias test motion errors
on the Fourier coefficients defining the applied torque function during
“smgle-ams angular vibration tests. The test motion errors considered
_are errors in the knowledge of amplitude and frequency of the applied

) i};ofions and misalignments of the test motion axes.

Derivation Overview — The derivation begins with Egs. (A-5a)
through (A-5g) of Appendix A. These equations relate the 7 Fourier

coefficients to the gyro parameters and the test motion quantities for
the general in-phase case:

-

g e = (B’ Sl’ Cl, Sz, C2, Ss, 3) =£(k1. - .k14s Wl, WO’ wsa w) (B"l)

~

Sl )
where f represents the seven given functions.

. The derivation proceeds in three major steps as follows,
N First, partial derivatives are taken with respect to the motion quantities
to yield 7 perturbation equations which can be expressed in one vector

matrix equation:
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————————— - = e

= .
6B
55 - -
1 GWi
601
6W0
GWS S
. ) 5C, -
Pt | Buw
R 683 -
ke 8C,

whére the elements of M1 are expressions involving the k's, Wi’ Wo’ Ws
afd .

Second, Eq. (B-2) is transformed into the form:

Oz in '.-.G‘V‘-1
&
A=M,| ¢ | (B-3)
Seven €S
thie 6w

which relates the Fourier coefficient errors to test motion magnitude and

angle errors, rather than component errors.

_ Finally, Eq. (B-3) is specialized for the six test axis orientations
of interest and reduced to the form:
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1 (B-4)

g
I
=

The test axis misalignment angles, €4 and €9) have different meanings in
each case. If the test axis is one of the principle axes (say i), then ¢ and
€5 are simply the misalignments about the other two (o and s). If the test
axis lies midway between two principle axes (say i and o}, then €4 is the

misalignment about the third (s) and ¢y is the misalignment about the axis

perpendicular to both the test axis and the € axis.

These three steps are followed in detail below, concluding with
six equations (B-8a) through (B-8f} giving the expressions for the elements
of the matrix M3 for each of the six test motion axes of interest.

Derivation Details — Equations (B-5a) through (B-5g) give the
seven perturbation equations obtained by taking partial derivatives of
the seven equations, (A-5a) through (A-5g). Equations (B-6a) through
(B-6e) develop the relationship of component errors (8W;, W, 6Ws)

to magnitude and angle errors (W, ¢, €, €g). The three relations
of Eq. (B-6e) were substituted into the perturbation equations to obtain
new perturbation equations, as shown in Eqs. (B-Ta) through (B-Tg).
Table B-1 summarizes facts needed to specialize the perturbation
equations to the six tests of interest. Finally, Egs. (B-8a) through
(B-8¢g) present the seven perturbation equations in vector-matrix form

for the six cases.
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. 1 1
6B = [k,TWi - dkgw 4 ikmws] oW,

1 1 '
| +[k8wo N 3kgW; + Ekllws] %,

) 1 1
+ [- k.7Ws + -gkmwi + —2-1:1 lwo] GWS

+[0] 6e

1 4 471271 4712's

+ [k5] 6W0

+[k6 -3k, ww } 5W

&S =[k +9x w2 .3k w2]5wi

27121 s S
+[0]6w

_ 1, -
6C, = w[kl + 5k 4Wiwo] W,

1 2 .2
-l gy (0F - W2) ow,

1
+ w[k3 - -2—k14W0WS] GWS

1
+|:k1Wi + k2W0 +k

3 4

_ w
85, = [0] W, + [-2- klaws] 8w

n 1
+ [—2- k1 3W’o] 5WE + [§k13W0WS] bw

s
4

2

2
Ws * -k14W0 (wi

(B-5a)

(B-5b)

(B-5c)

w:)] buw

(B-5d)
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1 1
6C2 [ k'TW + 2I{Q‘W 2k10W ] G_Wi

1
[ kW +2k9W kuw]owo
sk, W, - 2k -l-k w | sw
s ~ 2%10W; ~3%11% | Vs

+[0] 6w
3, w2, 1l
&S, - [ 3y W2+ dic W ]6w + 0] oW,

[2k12W W ] +[0] 6w

W =Wl + 8 1..= 5W111 + GWOIO + 5WSIS

=W (Gcili + 60010 + 5csls)

+ §W (cili + colo + csls)
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Figure B-1 Test Axis Misalignment Angles

The direction cosine errors are, from Fig, B-1:

. = -C €
6c'l cS€0 o s

8c =c.€e_-¢C_¢€,

- ﬁcs = coei - cieo
The;éf_ore:
OWi = ciBW + Wcseo - WcoeS

- -

5W0 = coow + Wcioss - Wcsei

5WS = csbw + Wcoei - Wcieo

. -
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_ 1,1
8B = W(kye, - sk + gRyoes) (60 + Wege, - Wepe)

T
1
+W( -2—k901+k8c +2k11c ) (c 6W - Wc e +W € )
1 1 '
+ W (3k10% * 3511% ~ K¢C%) (eg0W + Wegg; - Weye,)
+ (0) 6W

_ 2 . 2 . 2
= [k'lci +kgCy - kqCq - KgC, T Ky k11‘30“.«:] W

1

2k11c Co + 2k7c cS - (k,? - k8) cocsil €,i
1
T2

‘1, 2 1
- *Wz_:z'km"i*i
ol 1, 2.1
"5Kg% * 3

1
knc c0 + 2k7c cS 2k9°ocs:l €,

2 1 1 7
kyC, = (kg + kg) 0504 + 3416 §k1o°o°s] ‘s
(B-Ta)

9, 2 3, 2 |
65, = [k4 +(4k12 kacs)wz:l (c;6W + Wee - We e )

SR [ks] (COGW - Wc:sei + Wcies)
30 2 |
[kﬁ 5 12c c W ](csﬁw + Wcoei - Wcieo)
+ [0] 8w
9 3 9 2\ ,,,2
[k4c +k5c0 +k6c "'(4 125 41«:12t:1cs)W ]GW
(kc+kc)W3 cch3
5 60 271271 &
3 2 3 3\,,,3
* [(k4cs - keg; ) W *(4 12% s - 4k12°s)w ]‘o
' +[(-k4co+k5ci)w+( 2 12c2c +2k12 2)W3] €q

+[0] sW : \ (B-Tb)
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¢ 6W + Wc E Wcoe s)

2 2 : o
4 ) ](COGW-WcSei+Wci€S)

-k
] c6W+ch -ch)
i 0

( k,.c (:2 - 1L14c CZ)WS] 6w

_ - 1
€17 "’[k1 t2R15%Y |G
1, 2 1
+w[k2+(4k14c i

¥ [ks 7%14%%s"Y

[kc+kc-rkc K146,

[k C. +k2c +k (V +(Z 14c?c0 - 3 14 )Wz}ﬁ
1 2 1 3 1 2 3

( °s * ¥3% )W*( 7514% % * 1%14% ‘§k14°o°s)w ]‘i

: 1 3

+ w ( ) ZkoicocSW ]Eo _

1 2 1, 3 1. 2
¢y * Ko )W ¥ ( 3%14%% T 75145 Zk14°i°s)w3]‘

n

10 8

(kc + ke +kc)W+(1 cfe 1k14c cz) 3]5w (B-Tc)

3 %145
s§2 = (0) 8W,
E (2 LI W) (coaw - We e, + Wcies)
(2 1:13 ) (c 5W + Wcoei - Wciec) )
) (21‘13" ¢ Wz)
= - [k13c c W] oW |
[, 2w wel
‘_""Lkla 2 " K13% z} * w[‘kmcico “2"] o
g 2
twlkqc;co Ez‘] gt [kwcocs %2‘] bu (B-7d)

.
‘\
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0OSs

+ [(—k8c0 + kgci - kllco)w] [coﬁw - Wcs € + Wcies:l

+ [ -k,?(‘:S -k,.C. - kllco W] [csﬁw + Wcoei - Wcico]

5C, = [(k7ci +kge_ - Ky w] [ciGW+Wc ¢ -We ¢ ]

1071
+ [0] bw
; W [k7c12 - kgt g k’TC:+ kg% ~ ¥10%% " *11% S] W )
W ['%knci * 3%11%% - 7K10%% " 2%5C% * (%  Xq) COCS]
- W [*‘21‘1‘10"12 - 3¥10% * 7511%% * K0 * 2%C¢ ]60
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TABLE B-1
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_Angular Vibration about the Output Axis
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" Angular Vibration about the Input Axis
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Angular Vibration about Input and Output Axes
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APPENDIX C

KALMAN FILTERING FORMULATION

For the single-axis vibration tests described in Chapter 3, the
first data processing stage (see phase Ia in Fig. 3.1-3) is one which ac-
cepts as input the scalar, periodically time-varying gyro output and pro-
. duces as output the set of Fourier coefficients defining the applied torque

. function. This appendix formulates this data processing function as a

¢cproblem in linear estimation for which the Kalman filter is an optimal

.-solution. The filter equations, which could be used for processing actual
tfest data, are presented. A hypothetical situation in which there is no
process noise is used fo demonstrate the trade-off between test accuracy
and test duration, and to show a connection between this type of processing
and classical Fourier analysis. Finally, the full problem, with both
measurement noise and process noise is treated and some approximate
equations, which are useful in predicting the achievable test accuracy and

required test duration, are developed.,
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C.1 FILTER EQUATIONS

In this section the estimation problem is formulated in mathe-
matical terms and the optimal solution is stated in the form of a set of
differential equations, the Kalman filter equations, which can be mechanized
to process data. No proof is given here for the optimality of this solution
since it is well documented. (See, for example, Ref. 8.)

The problem formulation requires three things: a linear meas-
urement equation, a linear state differential equation and a description of

the statistics of the random variables defined in these two equations. A

scalar time-varying signal (torquer current) is measured which, except for -
-errors in the measurement process, is proportional to the output of the
torqué generator. Therefore, the measurement equation is (See App. A. ).

5]
i

Mo + error

B + S1 sinwt + Clcos wt

poiEe v +8,sin2 wt + Czcoszajt |

2

+S3sin3 wt + C3c053wt '

+ error ’ (C.1-1)

4yhich can be rewritten:
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| + x4h4(t) + x5h5(t)
T L xghgt rxgayl)

Cav(@)

=Hx +v 7 {C.1-2)
"The components of the state vector x are the 7 Fourier coefficients. The
elements of the measurement matrix H (in this case a row vector) are the
set of time-varying functions (1, sinwt, cos wt, sin2 wt, ... ). We assume
the measurement noise v to be Gaussian white noise with zero mean and
Tovariance r6(t-r), where & is the Dirac delta function: |
lowinT ' _
HCH v =0; v(E)v(r) = rét-7) (C.1-3)

P

Before discussing the state differential equation and process
noise we distinguish between the following two test situations. In case a
the only data produced by the test is that representing the time history
of the gyro torquer output, and it is natural to define measurement noise
Also natural to regard fluctuations in the applied test motions as one source
of process noise. In case b both gyro rebalance torque and {est table angle
measurements are generated. In formulating the estimation problem
below, however, we continue to treat gyro torque measurement errors as
the only source of measurement noise and we regard table angle encoder
errors as a source of process noise. This point of view avoids more
complex calculations which would arise if we expanded the measurement

equation fo include table angle measurements.
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Case a

The state equation is the seven-dimensional vector differential
equation expressing the rates of change of the seven Fourier coefficients.

The state equation is:

i

Xx=u (C.1-4)

where the process noise vector u is also assumed to be Gaussian white

noise with:

t)=0; g(t)g(r)T =Q6(t-T1) (C.1-5)

There are two ways in which process noise can occur. Consider the fol-
lowing specific example of a single-axis angular vibration test. The test
motion axis is midway between the gyro output and spin axes; the applied

angular rate is given by:

W =W = sin wt (C.1-6)

The f-

PRty

Pfats__e_d‘ on the expressions given in Table 3.1-1 we can write for the

measurement equation:

oy
Tivea on..
ANCHA
TR

A e o
LR
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- -

Latr e
AL B

error.

2 = I:M'b * g (kg 'k7+k11)}

+

+

-+

+

+ -% (15 + kﬁ)] sin wt

wW 1
-J—E—_(kz +k3 -Zk4)} cos wt

-
sz
Vv 2

leJ sin2 wt

B _W; (ks -k7+k11)} cos 2 wt

b

[0]sin3 wt

3 . .
wW
— k cos 3wt

BN

v (t)

(C.1-7)

The terms in the brackets are the seven state variables in this example.

They can vary either because the basic parameter groups (the ki's) vary

during the test or because the test motion amplitude and frequency (Wand w)

vary during the test. If test motion variations are the major cause of

process noise, the various components of the noise vector will be highly

correlated since W appears in all six non-zero state variable definitions

and  appears in three of them. That is, the off-diagonal elements of the

Q matrix will be non-zero and significant. If, on the other hand, gyro

parameter changes are the major cause of process noise, we would expect

I TIN
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very little correlation between process noise components; the only exception
being a strong correlation between the first and fifth components because

both depend on parameter groups k7, kB and k11'

Since bofh the state equation and the measurement equation are
linear (with time-varying coefficients in the latter), and si'nce the process
and measurement noises are assuined to be Gaussian, the Kalman filter is
the optimal way (minimum variance estimation error) to process the meas-
urement data. The applicable form of these equations may be written:

. | ',

T R

$=K[z-Hzx] (C.1-8)
1T !

K = ZPH (C.1-9)

p= Q.-%PHTHPJ - (C.1-10)

where _55 is the optimal estimate of the state vector x, K'is the Kalman
filter gain matrix (7x1) and P is the covariance matrix of the estimation
error:

imaacnt.

belino P=(X-x)(X- E)r_r ‘ (C.1-11)

PO

The integration of Eq. (C.1-10) yields curves like that illustrated in Fig. 3.3-3.
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Case b

We now consider the situation in which table angle measurements
are generated. In the following formulation Eq. (C.1-10) still applies, but
with a modified interpretation for the process noise matrix Q. Consider the

third state variable in the above example:

xg = 7_“1 (k + kg - 1k4) | (C.1-12)
Differentiating:
e - % (1_(2 i, - %1';4)
e ¥ ;’E(kz + Xy - al—k4)\if
-~ . \/“Lz (kz + kg - %k4)u (1)

We will consider the test motion changes, W and w, as control functions
~which change the values of the state var1ab1es (Fourier coefficients). The
indicated values of these contral functlons whlch are derived from test
table measurements, enter into the filter equations as a control vector.
Following the development in Ref. 7, Section 2.2, "State Estimation
- Without Measurements, " we can write for the state equation:

b e -

x=u=Fx+ Gy, +Lp ' (C.1-14)

. e s ——

[See Eq. (2.2-6) in Ref. 7.]

where, in this case:
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e F=0

w represents random "'system disturbances,’” or changes
in the values of the parameter groups (15:1, - fcl 4).

p represents the *control function, ' or test motion changes
(W, @).

G is a 7x14 matrix whose elements are terms like @wW/v 2

is a 7T x2 matrix whose elements are terms like

ﬁz 3 474

Fcﬁldwing Eq. (2.2-8) in Ref. 7, we can write:

o P=){0P+P )/PP+GQkGT+LSLT | (C.1-15)
where: -
gk(t)g_k(r)T =Qb(t-1) (C.1-16)
and: |
[2® - 2pg®] [R® - pipgn)]* =887 (C.1-17)

We define the effective, overall process noise matrix as:

R Q= GQkGT +LSLY | (C.1-18)

where GQkGT represents the contribution of random changes in the gyro
parameters and LS LT represents the contribution of "errors in the applied
control,' i.e., errors in the indicated test motion., We have adopted

the following point of view. The indicated history of test motion, de-

rived from the table angle measurements, is regarded as the "desired”
control function. The difference between the actual and indicated motion
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changes can then be regarded as the error in the applied control, This

error is effectively a process noise in this formulation.

Together with the modified interpretation of the process noise -
matrix @, Eq. (C.1-10) must be modified to account for the effect of the

indicated, or "'desired,” control:

|sdne

= K[z - BX] + Lp, 4 (C.1-19)

C.2 TEST TIME VS ACCURACY

For the hypothetical situation in which there is no process noise

(Q = 0) Eq. (C.1-10) reduces to:
:\_G:i{'{ . . . . .

| - 1pyTup (C.2-1)
2¢O r )

Procls

__ Since the derivative of the inverse matrix can be written:

. -1 1. -
pl-_plpp! (C.2-2)
we can write:
p-1 =%P-1PHTHPP'1
1T o
=7HH . {C.2-3)

. Based on the definition of H we have:
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cos 2wt

ginutcog Tt

cosytros 2,1

gin2uwtcos 2wt

p—
1 sin el coswl sinZut
—
sinz..-l stnat cosat singt8in et
cos’u-l cosutsin2at
HWh= SIn® 2t
e symmetric
.

corszig-t

8in 3t

singet sin et

cosytgin ol

sinZwtsindat

cos2u-tsindet

sin2wtcos 2wt

s«ir:uz 3t

cos St

singtcos Jut

coswt coa Jgt

co3 2wt cos Jut

sindgptcos 3yt

:cszamt

(C.2-4)

Notice that the off-diagonal elements are prcducts of two time functions which

are orthogonal over one test motion period, T = 27 /w (the integral of the
Vi ‘
product is zero). The integral of the matrix HTH over exactly one period

ié;,f'thérefore, the diagonal matrix:
[

t=(n+ l)lT

H Hdt =T

t=nT

B3] -

BN
o) -t
nof -

O,

o] =

l£~.:)I b

(C.2-5)

Therefore, the change in the inverse covariance matrix over one cycle of

the test motion is:

i| Reproduced from
‘| best available copy.
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11
2 1
apl=-I 2
r
-
and-
- 1
-l(nT) (0) +£

3
i
0,

where n is the number of cycles since the start of the test.

DD s

Do =
o] et

O

DO -

DI =t

B3| -

INIH

DO} -t

DO} -

1
2—

(C.2-6)

(C.2-7)

After sufficient

t1me has elapsed the second term of Eq. (C.2-7) dominates the first term,

(0) allowing us to write the approxiinate expression:

ple) ~%
t - large

The covariance matrix then becomes

L

DO =t

O

T

DO b

BA] b

O

B3]

B =

(C.2-8)

taking the inverse of the inverse):
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Pt) =~ (C.2-9)

t -+ large O 2

oo
o i e -

i le
o

Thus, for the no-process-noise case, the simultaneous estimation of the
seven state variables, X4 through Xy separates into seven scalar problems

for which the rms estimation errors are:

- - r
o= / P, = / T (C.2-10)
o= [P, =[2 i=2,3 m (C.2-11)
i i t 39y ane .

Equation (C.2-11) illustrates the trade-off between test time and test accuracy

and

as a function of the measurement noise.
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‘C.3 CONNECTION WITH FOURIER ANALYSIS

The analysis of the preceding section can be extended slightly to
demonstrate an interesting connection between optimal filtering and Fourier

analysis techniques.

The combination of Egs. (C.1-9) and (C.2-9) yields the following ap-

proximate expression for the filter gain matrix:

1 ]

2 sin gt

Te. T

2cos _wt
2sin2 wt (C.3-1)
2 cos2 wt

T

K ==PH =~

t -+ large

H
e'f'“_a

2sin3 wt

2cos 3wt

Substituting Eq. (C.3-1) into Eq. (C.1-8) yields:

v

o
L]

N _ _ ~ [1 sinwt coswt ...]

1 1
2sin @t _ 2 sin wt
gz% 2 cos wt 7 - | 2cos wt éi_
28in2 wt 2s8in3d wt
(C.3-2)
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Integrating Eq. {(C.3-2) over one cycle, and treating T
this time yields:
(n+1)}T (n+1)T
A% _ B 1 2sinwt
STatd - t 2 cos wt
nT . nT w
| .

In Fourier analysis the coefficients are determined by:

Laan T
urs _ 1
B-T'det
. BE 0
Soe .
ToT _2 .
- Sn—szsm(nwt) dt
0
T
_ 2
Cn——,f fzcos(nwt)dt

0

oro. ‘
See, for example Ref.9. Alsot= nT. Therefore:

and X as constant over

zdt -IxT

(C.3-3)

(C. 3-4)
(C. 3-5)

(C.3-6)

pie 1 Fourier estimate of x
L A_fgn+1 = = { |based on (n+1)st cyclei - & (C.3-7)
of data. |
and: P
=5 8% (C.3-8)
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Thus, after sufficient time has elapsed, the optimal filtering equation be-
comes approximately Eq. (C.3-8), in which the state vector estimate Xn
based on n cycles of data is adjusted by a we1ghted (1/n) difference between
the Fourier estimate based on the n+ 15t cycle of data and the previous

estimate.

C.4 STEADY STATE SOLUTIONS WITH PROCESS NOISE

7 We now consider the effects of process noise, represented by the
matrix Q in Eq. (C.1-10}). The elements of the Q matrix along with the meas-
urement noise r determine the final value of the elements of the P matrix
as well as the settling time, t Note that the rms estimation error of the
ith state variable is the square root of the ith diagonal element of the co-

variance matrix:

o, = J Fii - (C.4-Y)

| L TR

GSolilL

Equation (C.1-10) represents n (n+1)/2 simultaneous first-order
ordinary differential equations which are nonlinear (since P appears twice
in one term) and which contain time varying coefficients (the elements of
H). The elements of P cannot reach constant values (with P= 0) since the

\elements of H change continuously. They can, however, reach a steady-

state solution in the form of an oscillation about average values.

T The most evident way of investigating these steady-state solutions

“is to numerically integrate Eq. (C.1-10} via computer, starting from various

_5-1mt1al values. Some examples of such integrations for one- and two-
dimensional versions of the problem are illustrated in Figs. C-1 and C-2 and
discussed below. We can achieve an analytic indication of the final average

values by making some simplifying assumptions as follows.
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w=1Hz

t (sec)

Figure C-1 Numerical Integration Results

Consider, first a one-dimensional version of Eq. (C.1-10) where
we are trying to estimate a single variable, the magnitude of a sinusoidal
oscillation:

pt)=q- '::hz(t)pz(t) ' (C.4-2)

where ,

COWS h(t) = sinwt | o (C.4-3)
The scalar p is the variance of the estimation error and the scalar q charac-
terizes the process noise. We set h2 equal to its average value (1/2) and let
p = 0 to obtain the steady-state equation: .

1.2 i
0= q- _ﬂpss ) (0.4 4)

;'l
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10! | r= 10

ay = 100
Qg9 = 0.1
8

Pag,  from Eq.(C. 4-18){C

e | 1.414 0
- 0.617 0.9

] Exact
. } Solutions
R
s |
30
t {sec)
Figure C-2 Improvement in Small Term Estimate Due to Correlation
Therefore: .
We is = C.4-5
Pgg 2qr , ( )

The validity of this solution is demonstrated in Fig. C-1 where integrations

of the exact equation, Eq. (C.4-2), are plotted for four combinations of r, q
:and p (0). Note that while the steady-state value is apparently the same in

all cases, it is approached much faster with the smaller measurement noise,

r. Also note that the true steady-state solution is more oscillatory with

the higher ratio of q/r. (Oscillations are also present in cases @and @

but are too small to be seen in the figure.)
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Consider next the two-dimensional problem in which a lafge
variable (Fourier coefficient), Xqys is multiplying sin wt and a small variable,
Xy is multiplying sin2 wt. We refer to X, as the "dominant term' and X, as
the "nondominant term." In the following development the process noise
qu,associated with Xy is assumed to be much larger than the process noise
d99 associated with Xg- [This would be true whenever test motion amplitude
variations are the major cause of process noise; see Eq. (C. 1-7).] The
off-diagonal element Gy of the process noise matrix can take values between
zero (no correlation between process noise cerpponents) and i‘/ qnq22

'(jié'rfect correlation). Equation (C.1-10) now becomes:
~ - - -

P11 P12 91 Y2

P12 Poa 919 92

i e L _
. P11 Pqo sin"wt sinwtsin2wt P31 Pig

°T e .2
Pio Pag sinwtsin 2wt sin™ 2t P19 pzz_]

(C.4-6)

We let the time varying elements of HTH take their average values:
sinzwt = sin22wt =% (C.4-7)
and

sinwtsin2wt = 0 SO (C.4-8)
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~-We also assume:

p > p . (C.4-9)
IISS 2255

which is borne out by the results below if 451 > Ggo- Therefore:

S ss ss S8

- with the assumptions of Egs. (C.4-7), (C.4-8) and (C.4-10), Eq. (C.4-6)
becomes equivalent to the three scalar equations:

N S
P11~ %1 " 3r P11
= Q- o PyD (C.4-11)
e - Pia = 913 " 2r P11F12 '
R -‘_ . . _ ) —1- 2 + 2
To,T Pgg = 929 ~ 37 P12 7 P22

Setting the three left-hand-sides equal to zero yields the steady-state
solution:

Py - /2rq11 (C.4-12)
ss

2r
P =q — . (C.4-13)
12, 124 qpq
2
q Lo
12
P = [2r\Qyo -5 (C.4-14)
22__ 22 4
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Equation (C.4-12), giving the steady-state variance of the dominapt term, is
the same as Eq. (C.4-5) for the one-dimensional case. Equation (C.4-16)
giving the steady-state variance of the small term, reduces to Eq. (C.4-5)

when the cross-correlation term, ;9 is zero, Thus, we can write:

=~/2—;11:'Ai '(0.4-15)

where A accounts for an 1mprovement due to correlation between the
various componenta of process noise. A conservative formula for the

final value of the estimation error for the ith state variable is, therefore:

il Lol :?, = zrq“ (0.4'16)
i - 11 ‘ .

The settling time (defined in Section 3.3 and illustrated in Fig. 3. 3-3) associated
with this level of accuracy may be found by setting Eq. (C.2-11) equal to
Eq. (C.4-16) and solving for t, yielding ‘

t = [2X (C.4-17)
5§ \/ %4

Efq:gz_:ttions (C.4-16) and (C.4-17) are plotted parametrically in Fig. 3.2-5.

—~

mes sl

norwte 7
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An alternate form of Eq. (C. 4-14)s:

2 _ _ 2 ~
Og = pzzss = \/quzz(l - c12) (C.4-18)

where 19 is a measure of the correlation between the two components of

process noise:
q ' | |
a__"12 (C.4-19)

[
12
V 93192

The corresponding expression for a useful test time is:

t, = [2X 1 (C.4-20)
2 Y% [ 2
12 |

The validity of Eq. (C.4-18) is demonstrated in Fig. C-2 where integrations
of the exact Eq. (C.4-6) are plotted for two values of the correlation

measure (zero and 0.9).

In summary, through the use of simplifying assumptions we
have developed a set of formulas which provide useful indications of the
final steady-state estimation accuracies, Egs. (C.4-16) and (C.4-18), and
the corresponding settling times, Egs. (C.4-2) and (C. 4-6), for one- and
two-dimensioﬁal versions of the estimation problem. Comparison of
Eqgs. (C.4-18) and (C. 4-20) with Egs. (C.4-16) and (C.4-17), respectively,
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shows that a strong correlation between process noise components reduces
the final estimation error of the nondominant term but increases the time
needed to reach the more accurate level. The validity of the above formulas
has not been checked for the n-variable case wheren > 2. Itis felt, how-
ever, that the formulas will remain valid since the two-dimensional case

contains the essentia! ingredients of the problem.
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APPENDIX D

FOURIER ANALYSIS EQUATIONS FOR
PULSE REBALANCED TESTING

This appendix derives two sets of exact equations which produce

the Fourier coefficients of the torque generator output produced during vi-
bration testing of a pulse rebalanced sensor. The first set correéﬁonds to
the binary or ternary pulse-torquing scheme; the second set corresponds
to the time modulation scheme. The torque produced by the rebalance
loop opposes the total "applied" torque, which is the sum of the desired

" gyroscopic or pendulous torque and all disturbance torques. Since the
applied test motion is periodic and the residual (non-motion-induced)
torgue is assumed to be constant over the time of the test, the total appﬁed

torque is assumed to be a periodic function of time.

-

D.1 BINARY AND TERNARY PULSE-TORQUING

Figure D-1 pictures typical waveforms of the applied torque,
Ma’ and the torque generator output, M g’ as well as their integrals, for
the binary pulse rebalanced case. The two integral functions are forced,
by the action of the closed loop, to have the same low-frequency harmonic
content {both consist of the ramp, Bt, plus a periodic function). The two
torque functions, Ma‘ and M o’ must also have the same low-frequency
description, even though they appear quite different in form. The de-

rivative of the torque generator output, M o consists of a sequence of
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Figure D-1 Binary Pulse Rebalancing Waveforms
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| impulse functions, as shown at the bottom of the figure. It must also be a
periodic function since it is the derivative of a periodic function. Its trigo-
nometric coefficients (§1, @1, etc.) are related to the torque function co-

efficients as shown. That is,

S =-wnC ' (D.1-1)
C = wns (D.1-2)

We can conveniently apply classical Fourier analysis to the

derivative function. Thus, looking at one test motion cycle, lasting time,

T = 2n/w, we can write:

T
Sn=% fM(t)sinnwtdt=%f M (t)sinnwtdt (D.1-3)
)
.- - 9 T . T, :
& =2 [ M()cosnutar=£ [M@smnotae  (D.1-4)
(o o

A single square pulse, starfing at time ti’ lasting one pulse
width, h, and of magnitude Mi has the form sketched below.
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ti = hi
Mi '
Mtg
—A v - t
t t.+h
1 1 :
1\"1 M, &6(t- tl)
tg 1
wE —_—l A A = t
-Mi 6(t-ti-h)

The derivative function consists of equal magnitude positive and negative
impulse functions spaced h seconds apart. The contribution of these two

“impulses to the integral of Eq. (D.1-3) is:

A§ni = % [sinnwti -~ sinnw (t} +h)]

= % [sinnmhi - sinnwh(i+ 1)] (D.1-5)

Note that Mi can take on either of two levels for binary torquing and any

of three levels for ternary torquing, according to:

M for a positive pulse
Mi = 0 for zero torque
-M for a negative puise

s

in
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s Adding up contributions like that of Eq. (D.1-5) over one full
cycle of k pulse widths, where k = T/h, we obtain:

k-1

§n = —:‘T—’ E Mi [sinnwhi - sinnwh (i + 1)] (D. 1-6)
i=0

Now, using the identity:

sin{q + B) = sina cos B + cos ¢ Sing (D.1-T)
we obtain:
WHoo
k-1
Sn = % E Mi [(1 - cosnwh )sinnehi - sinnwh cos nwhi]
i=0 '
(Do 1-8)

Averaging over m full cycles, or km pulse widths, we obtain:

<

mk-1
E Mi [(1 - cosnwh) sinnwhi - sinnwh cos nwhi]
i=0

S:l.
n m

ale

(D.1-9)

I
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| Similarly:
| T
5 1w Y
Cn — fo M({t) cosnwt dt
km-1

Mi [cos nwhi - cosnwh (i+ 1)]

1l
gl
Ae

Pl
i
o

km-1
= % ﬂﬂ Mi [(1 - cosnwhn) cosnwhi + sinnwh sin nwhi]
L i=0
(D.1-10)
where we have used the identity:
[
ri cos(o+ B) = cos ¢ cos B - sing sin g {D.1-11)

Substituting Eqs. (D.1-9) and (D. 1-10) into Egs. (D.1-1) and
{D.1-2) we obtain, finally:

km-1 .
S = 1 E M, [(1 - cosnwh) cos nwhi + sinnwh sinnwhi]
n mnrw i
i=0 ‘

(D.1-12)

km-1
Cc = 1 E Mi [(1 - cosnuh) sinnghi - sinngh cos nwhi]

(D.1-13)
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;'_"‘ e Equations (D.1-12) and (D. 1-13) are exact expressions for the

:_('.il-“okﬁrier coefficients defining the periodic function, Mtg(t). These ex-~

- pressions are summations, rather than integrals, because we have chosen

_ ;.tb work with the derivative signal, Mtg(t), which is a sequence of Dirac

“‘delta functions. The "input" data consist of the sequence of binary or
ternary numbers, Mi’ which represent the time history of the sensor re-

Ul

_balance pulses.

D.2 TIME MODULATION TORQUING

Adcin- In the time modulation scheme (Ref. 2) the torque level switches
i-between +M and -M, just as in the binary scheme, but the pulse widths

are varied, as shown in the sketch below.

: M
tg ’ ‘Ei
L‘."—.‘.’:: A\ v hi1|1nlll 14 4 )"t
-M
we ot
l\-’l Mﬁt-hi) M 6(t-hi-h)
tg

2 M 5(t-hi-g)
-' | 211"
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Each time interval of width h is divided between a positive pulse and a
following negative pulse. The switch from positive to negative takes place
at one of a number of discrete points in the interval. In the ith increment
[between t = ih and t = (i+1)h] the switching time is t = ih + £;. The net
torque is positive if ¢, > h/2.

A The contribution of the coinbined positive and negative pulses
during the i interval to the integral of Eq. (D.1-3) is:

A§n = % M [sinnwhi - 2sin(nwhi + nw#;) + sin(nwhi + nwh)]

(D.2-1)
Adding up contributions like that of Eq. (D. 2-1) over m full cycles, or
" km intervals of width h, we obtain: | '

=1
n n

--\Ii-:

mk - ‘

1
E [si.n nwhi - 2 sin (nwhi + nwﬁi) + sin{nghi +nwh)J
=0 . ‘

(D.2-2)

Using the identity given as Eq. (D.1-7) and the fact that, over an integral
nvmber of cycles, m: -

mk-1 . , ' |
E sinnehi =0 - (D.2-3)
i=0 ' |
we obtain:
mk-1 _
oof =1 W 2 : . - s
S "m & M [-2 sinnwhi cosnwi; - 2 cos nwhl smnw.ei
T i=0

+ sinnehi cosnwh + cosnwhi sinnwh]

(D.2-4)
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* Similarly,
km-1
¢ =Llw E : . .
'n o7 M [cosnwhl 2 cos {nwhi +nw£i)
i=0 :
+ cos{(nwhi +nwh]
km-1
-1 z : - i ; { si
o M [ 2 cos nwhi cos nw,zi + 2 sinnwhi smnwzi
o i=0
+ COS nc...;hi cosnwh - sinnwhi sinnwh]
(D.2-5)

where we have used the identity given as Eq. (D.1-11).

—
LRI
e -

BiLs Substituting Egs. (D.2-4) and (D.2-5) into Egs. (D.1-1) and
(D.1-2) we obtain, finally:

km-1
- M .
Sn = ong [-(2 cos nwzi - cosngwh) cosnwhi
i=0
+ (2 sinnwti ~ sinnwh) sinnwhi] (D.2-6)
W km -1 f
M . .
n =0 E [ Ecosnwzi - cosnwh) sinnewhi
. i=0 .
ery + (2 sinnwf,i - sinnwh) cos nwhi] (D.2-7)

Equations (D.2-6) and (D.2-7) are exact expressions for the
Fourier coefficients defining the periodic rebalance torque when time
modulation torquing is used. The input data in this case is the sequence

of values, Lys which represent the widths of successive positive pulses.
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APPENDIX E

SURVEY OF STRAPDOWN SENSOR TEST METHODS, 1968

: - At the commencement of the study reported in this document a
[:performed The survey was limited to procedures for determining motion-
;‘md—uced errors in inertial instruments with emphasis on those produced by
the angular vibration environment peculiar to strapdown inertial systems.
v Six facilities — The M.I.T. Instrumentation Laboratory, Cambridge,
Massachusetts, TRW Systems, Redondo Beach, California; The Central
~Inertial Guidance Test Facility, Holloman AFB, New Mexico; The Naval
«Weapons Center, China Lake, California; Hamilton Standard Systems
Center, Farmington, Connecticut; and Honeywell, Inc., Minneapolis,
,anesota were visited. In addition, Army Missile Command, Hunts-
 ville, Alabama and Honeywell, Inc., St. Petersburg, Florida were con-
ta_cted but visits were not made because no dynamic strapdown test work

.was being conducted at either of these facilities.

...-J

e ts
R [ PR

o During each visit information was obtained concerning the test
Cietltu:pm'ent available, the error models and data processing employed and
tests performed at that particular facility. Attention was also given to
:the manner in which the actual motion experienced by the test items was
,__determmed No attempt is made here to list the detailed capabilities of .
each laboratory. Rather, a set of general observations and highlights of

the combined test capability of the installations visited are provided.

——— =
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Angular Vibration Test Equipment — Machinery for subje(_iting
_instruments to angular vibrations was available at each of the facilities

. visited. However, there was a wide variation in the capabilities of dif-

. ferent laboratories. The Central Inertial Guidance Test Facility (CIGTF)

. and the Instrumentation Laboratory were the only two installations capable

-..of providing dccurate out-of-phase angular vibrations about a pair of
essentially orthogonal axes. The machinery used in both laboratories is
essentially identical. The two-axis vibrators are limited to frequencies
below about 100 Hz and neither appears capable of testing entire sensor

. packages of contemporary size and weight.

LR X . I

wyrmn

Both CIGTF and the Hamilton Standard Systems Center (HSSC)
h:hié.‘c; single axis angular vibration machinery capable of applying sinusoidal
p(aar-xéuiar oscillations up to about 1000 Hz to individual sensors. Agam, -
”é"shs"éntlally the same device — a torsion table driven by a linear shaker -

was found in both locations. The CIGTF, which had been using this dewce
- for high frequency testing claimed to have observed bad resonances in the
:-table structure at frequencies above 600 Hz. HSSC had madé use of this

.equipment to study sensor dynamic errors under random angular vibration

L]

.conditions. TRW Systems' test laboratory has a large angular vibration

ne

;machine capable of producing sihgle axis oscillations at frequencies up to
2000 Hz with a 500 1b test specimen. However, this device is not 'capable.

[N

of the precision inherent in most inertial test machinery.
BErinIL
ol T Most facilities surveyed contained single axis rate tables which .
could be driven by oscillatory signals to provide a single axis angular

vibration testing capability in the frequency range of 100 Hz or less.

216



THE ANALYTIC SCIENCES CORPORATION

o Linear Vibration Test Equipment — The best linear vibration
éapabilities belonged to Honeywell and M.I.T. Both have precision slip
tables capable of oscillations in the frequency range of up to 3000 Hz with
xf;aﬁamum force of 8,000 — 10,000 !b and displacements up to 1 inch double
amphtude. No capability for providing out-of-phase linear vibration along

two axes existed in any of the facilities visited.

.....

inv\r-\v» -

Test Data Processing — HSSC has a capability for recording the

output of a sensor undergoing dynamic testing. About 100 sec of data .
could be taken this way. In view of the emphaSis on recovering harmonic
signals during vibration testing which exists in this report, no facility

had a satisfactory ability to recover all error parameters from single-axis

angular vibration tests.

Both CIGTF and HSSC had a capability for performing spectral
density analyses on the applied test motions. In the case of the former
facility this was used in corjunction with sinusoidal motion tests on the
two-axigs angular vibratoer while Hainilton Standard performed density |
analyses to confirm the distribution of random angular rates applied by

the single-axis rotary table.

With the exception noted above, all closed loop sensor tests are
performed by feeding the instrument output into an up-down counter and
only the net pulse count for the duration of the test is available.
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Summary — None of the installations visited had either a two-
axis vibrator capable of oscillations in the frequency range up to 500 Hz
or a capability of recording sensor loop outputs directly while conducting
single-axis vibration tests. For this reason, the testing of strapdown
éensors for dynamic errors, including those introduced by the rebalance
electronics, appears to be in a state of flux. Conéequently, the conclusions
and recommendations of the study described in part by this document will
have a particular impact on the makeup of future inertial sensor test

laboratories.

218



THE ANALYTIC SCIENCES CORPORATION

- REFERENCES

1, Bumstead, R.M. and Vander Velde, W.E., "Navigation and
Guidance Systems Employing a Gimballess IMU ' ATAA
Prepnnt No. 63-307, August 1963.

2. Gelb Arthur, and Sutherland, Arthur A., Jr., "Design of
Strapdown Gyroscopes for a Dynamic En\rlronment "TR-101-2,
15 January 1968.

3. Sutherland, Arthur A., Jr., and Beebee, William 8. , "'Design
' of Strapdown Gyroscopes for a Dynamic Enwronment " NASA
CR-1396, August 1962 (Also TR-101-4, January 1969)

4. Wimber, B.J., "The Apparent Input Axis Misalignment Error
Caused by Angular Rotation about the Qutput Axis of a Single-
Degree-of-Freedom, Rate-Integrating Gyro, "Fourth Inertial
Guidance Test Symposmm Proceedings, MDC TR 68-78,
November 1968,

9. Gelb, Arthur and Vander Velde, Wallace E., Multiple-Input
Descrlbmg Functions and Nonlinear System Desxgn, McGraw-Hill
Book Co., August 1968,

6. Rauscher, M., Introduction to Aeronautical Dynamics, John
Wiley & Sons, New York, 1953.

1. Gelb, Arthur and Sutherland, Arthur A., Jr., "Application of
the Kalman Filter to Aided Inertial Systems," U.S. Naval
Weapons Center, China Lake, California, NWC TP 4652,
August 19268.

8. Bryson, A.E., and Ho, Y.C., Applied Optimal Control, Blaisdell
Company, Waltham, Massachusetts, 1969,

9. ' Hildebrand, F.B., Advanced Calculus for Engineers, Prentice
Hall, New York, 1948. -

919



